Final Report
March 12, 2010
WJE No. 2008.4286

Prepared for:
General Services Administration
Washington, D.C.

Prepared by:
Wiss, Janney, Elstner Associates, Inc.
330 Pfingsten Road
Northbrook, Illinois 60062
847.272.7400 tel | 847.480.9534 fax
TABLE OF CONTENTS

INTRODUCTION .. 1
Administrative Data ... 2
 Project Scope and Methodology ... 2
 Future Research ... 5
Building Data .. 5
DEVELOPMENTAL HISTORY ... 10
Historical Background and Context .. 10
Construction Chronology .. 10
 Initial Construction, 1883 ... 10
 Goddard Era Development, 1877–1899 .. 11
 Richardson and White Era Alterations, 1899–1937 ... 12
 Maintenance and Repairs, 1937–1970 .. 13
 Rehabilitation, 1970–2004 ... 14
 Period of Dormancy, 2004–2009 .. 15
 Undocumented Alterations .. 15
 Construction Summary, 1883–2009 ... 15
Evaluation of Significance .. 23
 Overall Significance .. 23
 Character-Defining Features .. 24
 Assessment of Integrity .. 25
PHYSICAL DESCRIPTION AND CONDITION ASSESSMENT .. 27
Overall Description ... 27
Exterior Evaluation .. 28
 Typical Exterior Materials and Features .. 28
 Description ... 28
 Condition Assessment ... 33
Interior Evaluation ... 36
 First Floor ... 36
 Second Floor .. 41
Structural Evaluation .. 45
 Description ... 45
 Condition Assessment ... 50
Mechanical, Electrical, and Plumbing Systems Evaluation ... 53
 Description ... 53
 Condition Assessment ... 53
RECOMMENDATIONS FOR TREATMENT ... 54
Historic Preservation Objectives ... 54
Requirements for Work .. 55
 Guidelines and Standards for Treatment .. 55
 Preservation Zoning .. 58
Recommendations ... 63
 Exterior ... 64
 Interior ... 66
 Structure ... 66
 Mechanical, Electrical, and Plumbing ... 67
Bibliography ... 68
Appendices..79
Appendix A – Copies of Selected Archival Documentation...79
Appendix B – Existing Conditions Drawings ..79
Appendix C – Structural Framing Plans ..79
HISTORIC STRUCTURE REPORT
General Kitchen (Building 45)
St. Elizabeths West Campus
Washington, D.C.

INTRODUCTION
At the request of the General Services Administration (GSA) and in cooperation with Perkins + Will, Wiss, Janney, Elstner Associates, Inc. (WJE) has prepared Historic Structure Reports and Building Preservation Plans for the buildings of the St. Elizabeths west campus in Washington, D.C. The Historic Structure Reports and Building Preservation Plans have been developed in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties, and have also been guided and informed by the Preservation, Design, & Development Guidelines, Master Plan, and Cultural Landscape Report for St. Elizabeths. The individual building Historic Structure Reports and Building Preservation Plans provide a framework for the future rehabilitation of the existing historic buildings as part of the overall planning and design effort for the campus, and provide critical planning and design documents preparatory to the ultimate treatment of the buildings. The proposed development of the site under the guidance of the General Services Administration (GSA) to provide office facilities for the Department of Homeland Security and the Coast Guard will involve rehabilitation of the majority of the historic buildings for new offices and shared uses, as well as historically compatible new construction and renewal of the significant historic landscape. The Historic Structure Reports and Building Preservation Plans are intended to provide guidance to property owners, managers and tenants, preservation consultants, all design professionals, contractors, and project reviewers prior to treatment. Like the Cultural Landscape Report, the individual building reports provide philosophical consistency and promote responsible preservation practices to protect this unique cultural resource, with the Secretary of the Interior’s Standards as the basis for all recommended project work.

Although the hospital has historically been referred to as St. Elizabeths the name was not officially given to the property until a 1916 appropriations bill designated the hospital as such. The origin of the name St. Elizabeths dates to colonial times as the piece of land on which the hospital sits was called the St. Elizabeth tract when Maryland was first settled. An 1839 Tract Plan labels the property St. Elizabeth. It should be noted that St. Elizabeth of Hungary (1207–1231) is the patron saint of the poor and outcast. The 1868 Annual Report states that the army hospital housed on the grounds during the Civil War was named for St. Elizabeth. As a result, several patients of the Government Hospital for the Insane began using this name in order to avoid using the word “insane” when describing where they were being treated. Note that the name historically has been written without an apostrophe. It is believed this is due to an inadvertent omission made while drafting the appropriations bill.

Each of the sixty-nine buildings on the west campus was designated to be the subject of either a Historic Structure Report or a Building Preservation Plan, depending primarily on its level of historical significance to the St. Elizabeths west campus. Buildings of primary or secondary significance received Historic Structure Reports, while buildings of lesser significance received Building Preservation Plans; the outlines followed for both types of report are similar although the level of detail varies. The scope of each report was also in part determined by the complexity of the subject building and the extent of available documentation for the subject building. For the
General Kitchen (Building 45), a contributing structure of the St. Elizabeths west campus historic district, this Historic Structure Report has been prepared.

Historic Structure Reports (HSRs), first developed by the National Park Service in the 1930s, are documents prepared for a building, structure, or group of buildings and structures of recognized significance to record and analyze the property's initial construction and subsequent alterations through historical, physical, and pictorial evidence; document the performance and condition of the structure’s materials and overall physical stability; identify an appropriate course of treatment; and document alterations made through that treatment. Building Preservation Plans (BPPs) were developed by the General Services Administration to provide building-specific documentation and guidance for planning projects of all scales, to assist in responding to tenant alteration requests, complying with changing codes and requirements, and maintaining historic materials. Information gathered for BPPs is entered into a historic building inventory database maintained by the GSA. For purposes of this project, each HSR as well as each BPP contains key information for input into the GSA database.

ADMINISTRATIVE DATA

Project Scope and Methodology
The purpose of the Historic Structure Report is to provide a compilation of the findings of research, investigation, analysis, and evaluation of the historic structure. The preservation objectives for the historic property are identified and treatment measures recommended for implementing and accomplishing these objectives. The Historic Structure Report serves as a basis for decision-making and direction for preservation of the building. The report also serves as a record document of existing conditions and as a basis for planning future preservation and maintenance.

The Historic Structure Report addresses key issues specific to the structures of the St. Elizabeths west campus, including the construction chronology of the buildings; the existing physical condition of the exterior envelope, interior spaces and features, structure, and mechanical, electrical, and plumbing systems; and the historic significance and integrity of the building. Assessment of hazardous materials is outside the scope of this study. The project methodology was as follows:

Research and Document Review. Archival research was performed to gather information about the original construction and past modifications and repairs to the buildings for use in assessing existing conditions and developing treatment recommendations. Documents reviewed included drawings, specifications, historic photographs, and other written and illustrative documentation about history, construction, evolution, and repairs to the subject buildings. The research for this study built upon the extensive historical and archival research performed by others. Primary reference documents reviewed for this study included the following:

- The DHS Headquarters Consolidation at St. Elizabeths: Final Master Plan, Oehrlein &

The following archival repositories were visited in researching this study:

- National Archives Building, Washington, D.C., and National Archives at College Park, Maryland
- General Services Administration archives, Washington, D.C.
- St. Elizabeths Hospital Health Sciences Library, Washington, D.C.
- Collections at the American Architectural Foundation, Washington, D.C.

Copies of selected archival documentation are provided in Appendix A. A description of research materials and sources reviewed and discovered is provided in the annotated bibliography within this report.

Condition Assessment and Documentation. Concurrent with historical research, a condition survey of the building was performed and observations documented with digital photographs, field notes, and annotation on baseline drawings. For purposes of the field survey, drawings were provided by GSA for our use developed from building scans prepared by Optira, Inc., a sub-consultant to Farewell Mills Gatsch Architects. The condition assessment addressed the exterior walls, roof, windows, and interior surfaces as well as primary interior spaces and features of significance. In addition, the assessment addressed the structural systems, which were examined from the exterior and accessible locations of the building interior. The assessment also addressed primary features of mechanical and electrical systems (particularly features of historical interest). The survey of mechanical and electrical systems was general in nature, as we understand that all mechanical, electrical and plumbing systems are scheduled for replacement as part of the anticipated building adaptive reuse; for this reason, functionality and needed repairs for the mechanical and electrical systems were not assessed. Landscape and site features were not surveyed as part of this study, as the existing
Cultural Landscape Report provides a primary reference.

Materials Studies. No specific materials studies were performed for this building; however, material studies performed for other buildings of the west campus were referenced as appropriate in developing treatment recommendations for this building.

Development of Chronology of Construction, Evaluation of Significance, and Preservation Zoning. Based on historical documentation and physical evidence gathered during the study, a chronology of construction was developed. An evaluation of the significance was also prepared, taking into consideration previous historical assessments including the National Historic Landmark documentation and other reference documents, as well as guidelines provided by *National Register Bulletin 15: How to Apply the National Register Criteria for Evaluation*. In addition, preservation zoning was evaluated and zoning diagrams were developed based on guidance provided by the GSA. This evaluation of history, significance, and zoning provided the basis for the development of recommended treatment alternatives.

Guidelines for Preservation. Based on the evaluation of historical and architectural significance of the structure, guidelines were prepared to assist in the selection of preservation treatments. These guidelines were coordinated with recommendations provided in the *St. Elizabeths West Campus: Preservation, Design, & Development Guidelines* (2008).

Treatment Recommendations. Following the overall treatment recommendation of Rehabilitation, specific recommendations were prepared for significant exterior, interior, and site features. These recommendations addressed observed distress conditions as well as preservation zoning guidelines and objectives. All recommendations were developed following the Secretary of the Interior’s Standards for the Treatment of Historic Properties.

Preparation of Historic Structure Report. Following completion of research, site work, and analysis, a narrative report was prepared summarizing the results of the research and inspection and presenting recommendations for treatment. The Historic Structure Report was compiled following the organizational guidelines of the National Park Service in *Preservation Brief 43: The Preparation and Use of Historic Structure Reports*, with modifications to organizational structure as required by the GSA for purposes of this project. In addition, the reports incorporated guidance provided by the GSA for Building Preservation Plans, including documentation components necessary for future entry in the GSA historic buildings database.

3 Caroline Alderson and George Siekkinen, *General Services Administration Draft Guidelines for Preservation Zoning*, in progress (2009). Note that the term and technique of “preservation zoning” as developed and used for some time by the GSA is not related to the term “zoning” as used in reference to municipal land use and building regulations.

Future Research

The following areas of study are recommended for further research or investigation:

- Further investigation and design consideration is needed to determine the appropriate treatment approach for the east elevation of the building. This former exterior wall was concealed within an addition constructed in 1892; the addition has subsequently been demolished. Physical evidence of the original 1880s east elevation may still exist under the existing temporary enclosure materials.

- A detailed structural analysis of floor structures should be performed to evaluate the adequacy of the existing slab, arch, and beam assemblies. The extent of needed reinforcing for these floors will be dependent upon the long term proposed use for this building.

- A detailed structural analysis and evaluation of the roof trusses should be performed, including detailed investigation of embedded supports within masonry bearing walls and evaluation of decayed roof components.

BUILDING DATA

A summary of key information for the building included in this study has been prepared for use by the GSA and future incorporation by the GSA in its historic buildings database. This information is presented in the following table.
General Kitchen (Building 45)

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPP/HSR creation date</td>
<td>March 12, 2010</td>
</tr>
<tr>
<td>Building ID</td>
<td>DC1336se</td>
</tr>
<tr>
<td>Current building name</td>
<td>General Kitchen</td>
</tr>
<tr>
<td>Historic building name</td>
<td>Creamery</td>
</tr>
<tr>
<td>Building status</td>
<td>Owned by GSA</td>
</tr>
</tbody>
</table>

Location Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Birch Street, S.E., Washington, D.C. 20032</td>
</tr>
<tr>
<td>UTM</td>
<td>18/326451/4302442</td>
</tr>
<tr>
<td>GIS</td>
<td>38° 51' 13.3" N/ 77° 0' 0.7" W</td>
</tr>
</tbody>
</table>

Size and Dimensions

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor area total (gsf)</td>
<td>14,443</td>
</tr>
<tr>
<td>First floor area (gsf)</td>
<td>7,392</td>
</tr>
<tr>
<td>Second floor area(gsf)</td>
<td>7,051</td>
</tr>
<tr>
<td>Occupiable area (gsf)</td>
<td>[To be provided by GSA for database entry.]</td>
</tr>
<tr>
<td>Stories/levels</td>
<td>2</td>
</tr>
<tr>
<td>Perimeter (linear feet)</td>
<td>635</td>
</tr>
<tr>
<td>Height (lf)</td>
<td>46</td>
</tr>
<tr>
<td>Length (lf)</td>
<td>116</td>
</tr>
<tr>
<td>Depth (lf)</td>
<td>96</td>
</tr>
</tbody>
</table>

Construction History

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical function</td>
<td>Kitchen</td>
</tr>
<tr>
<td>Other functions</td>
<td>Creamery, storage</td>
</tr>
<tr>
<td>Current use</td>
<td>Vacant</td>
</tr>
<tr>
<td>Date of construction</td>
<td>1883 completed, 1900 addition (razed between 1968 and 1982)</td>
</tr>
<tr>
<td>Status</td>
<td>Extant</td>
</tr>
</tbody>
</table>

Historical Designation

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Register</td>
<td>Historic district 1979-04-26 (contributing)</td>
</tr>
<tr>
<td>National Historic Landmark</td>
<td>Historic district OMB No. 1024-0018 (contributing)</td>
</tr>
<tr>
<td>State/local designation</td>
<td>DC Landmark Nomination (contributing)</td>
</tr>
<tr>
<td>GSA determination</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Other Documentation

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HABS/HAER</td>
<td>Scheduled for completion in 2010</td>
</tr>
<tr>
<td>Reports, studies, and other documentation</td>
<td>• Cultural Landscape Report, Heritage Landscapes and Robinson & Associates. November 2007</td>
</tr>
<tr>
<td></td>
<td>• Historic Resources Management Plan, Devrouaux and Purnell Architects. September 1993</td>
</tr>
<tr>
<td></td>
<td>• Wards of a Nation, Frank Millikan. January 12, 1990</td>
</tr>
</tbody>
</table>
Figure 1. Site plan of the St. Elizabeths west campus. General Kitchen is shaded black.
Figure 2. Existing first floor plan of the General Kitchen. The Old Storeroom (Building 44), located at the lower right, and Bakery (Building 46), at the top of the page, are shaded for clarity.
Figure 3. Existing second floor plan of the General Kitchen. The Old Storeroom, located at the lower right, and Bakery, at the top of the page, are shaded for clarity.
DEVELOPMENTAL HISTORY
HISTORICAL BACKGROUND AND CONTEXT

In 1852, St. Elizabeths Hospital was established in large part through the efforts of Dorothea Lynde Dix, who led a national crusade for the ethical and humane treatment of the mentally ill. Under the direction of Superintendent Charles Nichols, the hospital endeavored to become a curative treatment center for the mentally ill of Washington, D.C., and the United States Army and Navy.

Initial development on the St. Elizabeths campus was focused on construction of a central patient ward building. Based on the Thomas Kirkbride plan, the design of the Center Building group gave consideration to moral treatment principles by creating a healthy and peaceful environment for patients while separating them into small ward units based on perceived mental condition. Throughout Nichols’ tenure, expansion of the St. Elizabeths hospital continued along the Kirkbride plan.

Following the Civil War, the service of St. Elizabeths was extended to include military veterans. The change in administrative policy altered the demographics of the institution and lead to rapid increase in the patient population. New patient facilities were constructed to accommodate the needs and growing number of aging and mentally challenged Civil War veterans. During the 1870s, the Dawes (Building 7), Garfield (Building 5), and Center Building extension (Building 2) were constructed as additions to the Center Building group. The increase in patient population required the construction of new service buildings. In 1878, the Bakery (Building 46) was constructed as a detached support building to replace the existing facilities located in the basement of the east wing of the Center Building. Development of the Bakery was influenced by the design principles outlined by Kirkbride in his publication On the Construction, Organization, and General Arrangements of Hospitals for the Insane. Construction soon followed on other free-standing patient support facilities. The Bakery served as a hub around which other food preparation and storage buildings were erected.

In 1877, William Godding assumed control of St. Elizabeths Hospital and encouraged the construction of small free-standing cottage buildings to promote a healthy environment and facilitate the orderly segregation of growing patient groups. The change in architecture was a shift from institutional to domestic imagery in caring for the chronically ill.

During Godding’s tenure, seventeen free-standing ward buildings were constructed on the St. Elizabeths campus. With the rapid increase in patient population came the need for additional support structures to improve conditions and develop infrastructure. The Detached Dining Hall (Building 33), Greenhouse (Building 20A–H), and Rest/Circulating Library (Building 40) were built to augment the limited space in the cottage plan buildings, facilitate patient rehabilitation, and initiate scientific research. Infrastructure projects, such as the construction of the Boiler House/Ice Plant (Building 52), Tool House (Building 53), Engine House/Fire House (Building 41), the General Kitchen, and expansion of the Laundry Building (also known as the Construction Shops, Building 49) were aimed at developing St. Elizabeths Hospital as a self-sufficient campus.

CONSTRUCTION CHRONOLOGY
Initial Construction, 1883

In 1882, an $8,500 appropriation was requested for construction of a detached kitchen to support equipment for roasting, steaming, and general food preparation. The existing kitchen, located in the basement of the Center Building (Building 1 and 2), was to be relocated. As described in the 1882 Annual Report:

The increased number of inmates renders the erection of detached buildings for the
culinary department an absolute necessity. The freedom from the odors of cooking throughout the building, and the absence of the tropic heat hitherto generated in the offices situated directly over the present kitchen, will be felt as a relief.

When construction was completed on the General Kitchen in 1883, it consisted of two rectangular buildings, a north and west wing, situated perpendicular to each other and connected through a corridor. The two-story brick structures had truss-framed roofs with six-over-six double-hung windows, stone sills, and corbelled brick drip molds over second floor window openings. The interiors of the buildings had exposed truss ceilings, plaster wall finishes applied directly to a brick substrate, and linoleum floor tile (Figure 5). The first floor plate had a brick arch structure supported on fluted cast iron columns. A network of metal rail ties led through all floors of the building to provide access for food carts. The food carts allowed for efficient transport of the meals to the surrounding west campus buildings. Upon completion of the General Kitchen, facilities were relocated from the basement of the Center Building.

The north wing of the new structure was directly connected to the south side of the Bakery and housed the kitchen facilities. The building had a standing seam metal hip roof with three operable skylights located along the ridge of the roof that were capped by louvered vent hoods.

The west wing of the General Kitchen had a slate tile gable roof with projecting vent stacks and gable roof dormers (Figure 6). The building housed kitchen support and storage facilities on the first floor. An employee dining hall and residence for the culinary department were located on the second floor. A small storage structure was attached to the north end of the east elevation.

At the first floor level, the north and west wings were connected by a one-story brick building located at the juncture of the two buildings. As described in the 1884 Annual Report:

The new kitchen, in a building that adjoins the bakery, is a large room 65 by 45 feet, and furnished with the latest appliances and lit by skylights, it affords a pleasant contrast to the one left behind in the basement, and relieves the center building of much of the heat and odor of the cooking. In an adjoining portion of the building are large dining halls for the outside help, with convenient lodging rooms for those employed in the culinary department, while below are storerooms, milk room, meat room, and scullery. A covered way affords a passage, with track for the food car, to the main building, while a longer brick arch becomes the subterranean avenue to the dining hall of the detached buildings.

Godding Era Development, 1877–1899

Under Superintendent Godding, the development of new patient wards adopted a different architectural form. Starting in 1878 with Atkins Hall (Building 31), the ward buildings were constructed as detached cottages and clustered into small groups. Each building group was designed and designated for a specialized patient type. The architecture allowed for the orderly separation of patients and maintained the healthy and serene family atmosphere of the ward units, without the constraints or limitations of a large single building. However, existing support facilities

6 1882 Annual Report
7 1896 archival photograph
8 1884 Annual Report
9 1884 Annual Report
10 1898 archival photograph
11 This rectangular volume appears in the 1899 site plan as part of the footprint of the building. It is assumed it was part of the original construction.
12 This rectangular volume also appears in the 1899 site plan as part of the footprint of the building. It is assumed it was part of the original construction.
13 1884 Annual Report
soon proved inadequate and inefficient in meeting the increased population introduced by the detached building type.14

When originally constructed, the General Kitchen was considered exceedingly large to support the 942 patients housed on campus. However, by 1889, the population of the hospital had reached 1,400 persons and it was necessary to expand the kitchen to meet the growing demand. A $5,000 appropriation was granted for an addition to the General Kitchen to service the patient population adequately.15

\textbf{1892 General Kitchen Extension}

In 1892, the two-story with basement addition to the General Kitchen was completed. The brick structure with slate tile hip roof and projecting gable roof dormers was situated east of the original north wing. The extension had six-over-six double-hung windows, corbelled brick drip molds, and a metal cornice over a corbelled brick blind arcade. An exterior entrance consisting of a cast iron staircase, brick landing, and awning was located on the east elevation (Figure 7 through 10).

\textbf{Richardson and White Era Alterations, 1899–1937}

During the tenure of Superintendent Alonzo Richardson (1899–1903), the St. Elizabeths campus underwent an expansive building campaign to reduce overcrowding and improve infrastructure. Richardson’s tenure was cut short by his untimely death; however, his successor, Superintendent William White (1903–1937), oversaw the completion of the expansion project.

As a part of the campus improvement and expansion project, the Boiler House, constructed in 1878 as a one-story stucco building with hip roof and central vent hood, was razed. In its place, the Old Storeroom (Building 44) was constructed as a detached building immediately south of the General Kitchen (Figure 11). The storage facility augmented storage needs in the General Kitchen and Bakery. As part of the new construction, two connecting links (east and west) were constructed between the Storeroom and the General Kitchen at the second floor level. The enclosed connecting links had gable roofs, window openings with double-hung windows, and paneled metal cladding.16 The east raised connecting walkway linked the north elevation of the light grocery storage area of the Storeroom to the north wing of the General Kitchen. The west raised connecting walkway linked the General Kitchen creamery, located at the south end of the west wing, to the pasteurizing area on the west end of the Storeroom (Figure 12).17 An exterior cast iron stair case was located along the north elevation. It provided access from ground level to entrances on the second and third floor.18

Throughout the remainder of White’s residency, development at St. Elizabeths was focused on the east campus. With few exceptions, new construction on the west campus was concentrated on maintaining and improving the existing building stock to address the growing patient population and changing hospital needs.

In 1922, the first floor storage room in the General Kitchen, used for storing paints, was renovated into a room for peeling potatoes.19 By 1926, portions of the lower floor were used as a creamery in the production of ice cream.20

\begin{flushright}
16There was reference made on the original construction documents to a “platform” on the second floor plan which corresponds to the location of the raised walkways. The east raised walkway appears in a 1905 archival photograph. The west raised walkway is first seen in a 1922 aerial photograph.17 1899 construction documents18 1905 archival photograph19 1922 Annual Report20 Sixty-ninth Congress, 2nd Session, House of Representatives, Investigation of St. Elizabeths Hospital: Letter from the Comptroller General of the
\end{flushright}
alterations were made to the employee dining area, located in the General Kitchen, when it was converted into a cafeteria for white male patients from the Center Building group.21

In 1934, a one-story brick structure was constructed under the raised connecting link between the General Kitchen and Old Storeroom. The first floor of this structure was accessible from an exterior door on the south elevation. Initially, the room was utilized as a storage room for potatoes. The second floor was insulated with cork board and equipped with brine water coils and was used as a cold storage for woolen goods.22

Maintenance and Repairs, 1937–1970

Following Superintendent White’s tenure, development of the St. Elizabeths west campus consisted of upgrading and improving existing facilities to meet their changing occupant needs. Repairs made to the General Kitchen were documented through construction drawings, annual reports, and the 1945 \textit{Report by the Public Building Administration}.

In 1946, major administrative changes were made to St. Elizabeths Hospital that affected the potential use and maintenance plan for the west campus, as the supervising Board of Visitors was officially disbanded. This organization, which consisted of a group of private citizens, had been charged with monitoring and survey of conditions and treatment methods at St. Elizabeths since the hospital’s inception in 1855. At the same time, it was determined that patients from the United States Army and Navy would no longer be admitted to the hospital. St. Elizabeths was relieved of the governing civilian body as well as the issue of overcrowding that had overwhelmed the institution since the end of the Civil War. The dramatic administrative changes continued when the federal government shifted control to the newly created Department of Health, Education, and Welfare in 1953. Development at St. Elizabeths Hospital responded through the gradual relocation and consolidation of patient services from the older facilities of the west campus to the newly constructed east campus. With few exceptions, new construction was limited to the east campus while the existing structures of the west campus were renovated, maintained, or demolished, depending on their physical condition.

In 1948, an elevator was installed in the north wing of the General Kitchen to provide access to the lower level tunnels. The elevator was set on a concrete slab with concrete elevator shaft. The exterior face had a plaster finish.23 The elevator was replaced in 1958 and 1985.24

Throughout the 1950s, new concrete floor slabs was poured on top of the existing floor structure and finished with red quarry tile flooring.25 The alteration increased the thickness of the floor slab.

In 1954, extensive alterations were made to the General Kitchen to improvement the efficiency of cold storage units on the first floor. Throughout the building, electrical systems were upgraded. New refrigerating equipment was installed in the west wing. The alterations resulted in the removal of windows on the south and west elevations. On the south elevation, openings were infilled with brick. On the west elevation, the window opening was extended and fitted with a contemporary metal door.26

In the 1960s, an extensive effort was made at St. Elizabeths Hospital to modernize mechanical, plumbing, and electrical systems in the aging west campus buildings. The effort was initiated

\begin{itemize}
 \item 231948 construction documents
 \item 241957 and 1958 construction documents and 1985 construction documents.
 \item 251959 \textit{Annual Report}, 1954 construction documents, and existing physical evidence.
 \item 261954 construction documents
\end{itemize}
in response to the series of conflagrations that had plagued the campus for two decades. On April 20, 1961, a fire in the Larch ward of Pine (Building 6) resulted in a patient fatality. The following day, a fire erupted in the K Building which caused extensive damage to the structure and surrounding buildings. Funds were quickly directed by the Department of Health, Education, and Welfare toward creating a campus-wide plan to improve fire suppression plans, plumbing facilities, heating units, and electrical systems.

In 1963, an $865,000 appropriation was made for the installation of sprinkler systems in non-fire-resistant buildings. The suppression unit consisted of surface-mounted sprinklers and was installed in every room. That same year, a study of the existing plumbing and electrical systems was initiated. The study led to the appropriation of funds for a multi-million dollar facilities modernization project. Plans for building alterations were generated between 1963 and 1965 and included the replacement of electrical wiring and outlets, upgrades to lavatory and plumbing systems, and the installation of fluorescent light fixtures. The new piping and conduit were installed over finish materials and exposed to view. Construction began in 1966 and continued through 1970. Existing physical evidence indicates that alterations were made to the electrical, plumbing, and fire suppression systems in the General Kitchen. Based on the materials and character of the work, it is assumed it was completed in response to the 1960s appropriations.

Rehabilitation, 1970–2004

In 1968, the Department of Health, Education, and Welfare reorganized its management structure and placed St. Elizabeths under the control of the National Institute of Mental Health. The Institute sought to demonstrate how a large mental hospital could be converted into a smaller modern facility for training, service, and research. The change in administrative direction resulted in dramatic alterations to the planning and function of the west campus.

In 1970, patients were moved from all pre-1900 buildings. Dormitories constructed during the Nichols and Godding eras, which constituted half of the west campus buildings, were cleared and patients were relocated to the east campus or lettered buildings. This process temporarily resolved the urgent need for building maintenance on the aging west campus structures.

By 1977, the National Institute of Mental Health commissioned a master plan for the hospital to outline future growth and determine the fate of the aging west campus structures. The plan called for the temporary reuse of remaining west campus structures as patient support facilities until they could be phased out. In that same year, controversy arose when St. Elizabeths Hospital was denied its long-standing accreditation as a teaching and training school because the condition of campus buildings did not meet safety and structural requirements as outlined by the Life Safety Code.

In 1978, a supplemental appropriation of $52.2 million was approved for the renovation and modification of the hospital. Improvements and upgrades were made to address fire and safety deficiencies, electrical systems improvements, infrastructure improvements, and issues of accessibility. On the west campus, the renovations were focused on providing ramps and lavatories in compliance with accessibility laws.

Between in 1976 and 1982, the General Kitchen extension, constructed in 1890, was razed. The

27 1962 Annual Report
29 No construction documents or references in annual reports were identified from which to determine a definitive construction date.
30 1970 Annual Report
31 Ibid.
two-story structure was replaced by a metal-framed canopy by 2003.33 By 2008, the east elevation of the exposed General Kitchen building was infilled and covered in sheet asphalt. A small concrete shed roof structure was constructed at the south end of the elevation.34

Period of Dormancy, 2004–2009

The Department of Health and Human Services retained control of the St. Elizabeths Hospital west campus until 2004 when the property was transferred to the GSA.35 The campus facilities were stabilized and the buildings were mothballed by 2005.36 Window and door openings were covered and protected with plywood and access to the campus was secured.

The General Kitchen, along with most of the west campus, is currently vacant and has been mothballed. Plans are underway to rehabilitate the existing buildings and construct new buildings on the west campus for future use. Documentation of the recent history of the General Kitchen includes the *Cultural Landscape Report*; *St. Elizabeths West Campus Preservation, Design, & Development Guidelines*; 2003 Stabilization and Mothballing Study; archival photographs; and physical evidence.

Undocumented Alterations

Archival research and existing physical evidence suggest that changes were made to the General Kitchen that are not well-documented through available resources. Because of the limited information available, a specific date of construction cannot be identified for these alterations, which are described below.

Between 1945 and 1992, the slate tile roofing was removed on all wings and additions of the General Kitchen and replaced with asphalt shingle roofing.37

Construction Summary, 1883–2009

The construction history of the General Kitchen has been interpreted primarily through the *Historic Resources Management Plan, Report by the Public Building Administration*, archival photographs, and construction documents.

1882 An $8,500 appropriation was made for the construction of the General Kitchen.

1883 The General Kitchen was constructed as two buildings, oriented perpendicular to one another.

1892 The new General Kitchen addition, extending from the east elevation of the north wing, was completed.

1909–1922 The second floor raised walkways connecting the General Kitchen to the Old Storeroom were constructed.

1934 A one-story brick structure was constructed below the westernmost raised connecting link.

33 Comparison of archival photographs from 1968 and 1982 as well as a site model, on display at the St. Elizabeths east campus library, constructed in 1976.

34 Existing site conditions.

35 *Cultural Landscape Report*. V.2

36 *St. Elizabeths West Campus Preservation, Design, & Development Guidelines*. 18. A photograph of the building taken in 2005 by FMG Architects shows the building in a stabilized and protected state.

37 Comparison of the 1945 Public Building Administration survey and the 1993 *Historic Resources Management Plan*, building inventory.
2004–2005

Ownership was transferred from the Department of Health and Human Services to the General Services Administration in 2004. The structure was stabilized and mothballed by 2005.
Figure 4. Diagram showing the construction chronology of the General Kitchen, Bakery, and Old Storeroom complex.
Figure 5. View of the east elevation of the General Kitchen addition shortly after the completion of the addition, 1892. Source: GSA archives, image DC1336SE0P003.

Figure 6. The west elevation of the General Kitchen, 1898. Source: GSA archives, image DC1336SE0P002.
Figure 7. An interior view of the second floor of the General Kitchen looking west from the north wing, 1898. Source: GSA archives, image DC1336SE0P001.

Figure 8. The southeast corner of the General Kitchen addition, 1898. Source: National Archives, image 418-H-52.
Figure 9. The south elevation of the General Kitchen and addition, 1898. The old Boiler House (in the foreground on the left side) was constructed in 1876 and razed in circa 1900. Source: National Archives at College Park, image 418-H-54.

Figure 10. The General Kitchen addition is located behind the trees, the Bakery building is in the foreground, 1898. Source: GSA archives, image DC1458SE0P004.
Figure 11. View of the east elevation of the General Kitchen addition and Old Storeroom, 1906. Source: GSA archives, image DC1458SE0P002.

Figure 12. Interior view of the west wing of the General Kitchen, 1915. Source: GSA archives, image DC1336SE0P007.
Figure 13. 1922 aerial view of the west campus looking north. The General Kitchen is located at the far right side of the image. Source: GSA archives, image DC1472SE0P077.

Figure 14. Image of the storage area of the General Kitchen. The Old Storeroom is seen on the left, 1935. Source: National Archives, image 418-P-247.
EVALUATION OF SIGNIFICANCE

Overall Significance

The Criteria for Evaluation for listing on the National Register of Historic Places state:

The quality of significance in American history, architecture, archeology, engineering, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and:

A. That are associated with events that have made a significant contribution to the broad patterns of our history; or
B. That are associated with the lives of persons significant in our past; or
C. That embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
D. That have yielded, or may be likely to yield, information important in prehistory or history. 38

The Criteria for Evaluation for the designation of a National Historic Landmark state:

The quality of national significance is ascribed to districts, sites, buildings, structures, and objects that possess exceptional value or quality in illustrating or interpreting the heritage of the United States in history, architecture, archeology, engineering, and culture and that possess a high degree of integrity of location, design, setting, materials, workmanship, feeling, and association, and:

A. That are associated with events that have made a significant contribution to, and are identified with, or that outstandingly represent, the broad national patterns of United States history and from which an understanding and appreciation of those patterns may be gained; or
B. That are associated importantly with the lives of persons nationally significant in the history of the United States; or
C. That represent some great idea or ideal of the American people; or
D. That embody the distinguishing characteristics of an architectural type specimen exceptionally valuable for a study of a period, style or method of construction, or that represent a significant, distinctive and exceptional entity whose components may lack individual distinction; or
E. That are composed of integral parts of the environment not sufficiently significant by reason of historical association or artistic merit to warrant individual recognition but collectively compose an entity of exceptional historical or artistic significance, or outstandingly commemorate or illustrate a way of life or culture; or
F. That have yielded or may be likely to yield information of major scientific importance by revealing new cultures, or by shedding light upon periods of occupation over large areas of the United States. Such sites are those which have yielded, or which may reasonably be expected to yield, data affecting theories, concepts and ideas to a major degree. 39

Various previous studies have considered the historical significance of the General Kitchen. In the National Historic Landmark nomination,

individual buildings on the campus, including the General Kitchen, are designated as Contributing. There is no hierarchy or rating system on this form and the relative significance of individual buildings is not addressed in the text.

The District of Columbia Landmark nomination form indicates buildings as either Significant (more noteworthy) or Contributing (less noteworthy). The Significant category is further subdivided by historic period, with the designation S1 for the Nichols era, S2 for the Godding era, S3 for the Richardson era, and S4 for the post-1903 era. The General Kitchen is designated as Contributing in this report, indicating an average level of individual significance.

The Master Plan uses numerical designations 1 through 6 to indicate the number of categories of significance that pertain to the individual buildings, as noted in the Master Plan Table 4.1. Examples of categories of significance include “Example of Architectural Style,” “Association with Civil War,” and “Rare Survivor in Washington, D.C.” Although these various associations of historical significance are of differing importance, the Master Plan sums the relevant categories that apply to each building to derive a numerical total. In the Master Plan, the General Kitchen is given a 3 designation; note that this numerical designation refers to a quantity of categories rather than a comparative ranking of significance.

The Preservation, Design, & Development Guidelines address and tabulate contributing buildings only. Those buildings not listed in the report are considered non-contributing. The Preservation Guidelines are understood to follow the determination of significance in the Master Plan. The General Kitchen is considered Contributing.

The General Kitchen is significant under National Register Criterion A for association with the development of a campus-wide infrastructure to support the west campus of St. Elizabeths. As the campus grew in second half of the nineteenth century, support buildings were added to the site to provide a degree of self-sufficiency to the campus. The General Kitchen was constructed in 1883 and expanded in 1892 to provide kitchen services convenient to the Center Building group. This building served as a supporting structure. Therefore, it is primarily significant as a context building on the west campus. The building is representative of the intended self-sufficiency of the campus throughout its history.

The General Kitchen is also significant under National Register Criterion C for architectural design. The building exterior is constructed of red brick masonry with ornamental detailing such as projecting window hoods. These details are typical of the other buildings on the campus constructed in the 1880s and 1890s.

The period of significance for the General Kitchen is defined by its architectural design and its use for campus support services. Therefore, a start date of 1883, when the building was completed, is proposed for the period of significance. The campus-wide period of significance closing date of circa mid-1930s is appropriate for this building.

Character-Defining Features

The following existing exterior and interior elements and features contribute to the historic character of the building.

Exterior

- Exterior brick and stone masonry
- Masonry detailing: projecting window hoods
- Wood-framed multi-light windows
- Wood multi-panel doors
- Hip and gable roof massing with overhanging eaves
- Wood-framed dormers and cupola ventilators
- Hanging gutters and downspouts

The General Kitchen is significant under National Register Criterion A for association with the development of a campus-wide infrastructure to support the west campus of St. Elizabeths. As the campus grew in second half of the nineteenth century, support buildings were added to the site to provide a degree of self-sufficiency to the campus. The General Kitchen was constructed in 1883 and expanded in 1892 to provide kitchen services convenient to the Center Building group. This building served as a supporting structure. Therefore, it is primarily significant as a context building on the west campus. The building is representative of the intended self-sufficiency of the campus throughout its history.

The General Kitchen is also significant under National Register Criterion C for architectural design. The building exterior is constructed of red brick masonry with ornamental detailing such as projecting window hoods. These details are typical of the other buildings on the campus constructed in the 1880s and 1890s.

The period of significance for the General Kitchen is defined by its architectural design and its use for campus support services. Therefore, a start date of 1883, when the building was completed, is proposed for the period of significance. The campus-wide period of significance closing date of circa mid-1930s is appropriate for this building.

Character-Defining Features

The following existing exterior and interior elements and features contribute to the historic character of the building.

Exterior

- Exterior brick and stone masonry
- Masonry detailing: projecting window hoods
- Wood-framed multi-light windows
- Wood multi-panel doors
- Hip and gable roof massing with overhanging eaves
- Wood-framed dormers and cupola ventilators
- Hanging gutters and downspouts

Character-Defining Features

The following existing exterior and interior elements and features contribute to the historic character of the building.

Exterior

- Exterior brick and stone masonry
- Masonry detailing: projecting window hoods
- Wood-framed multi-light windows
- Wood multi-panel doors
- Hip and gable roof massing with overhanging eaves
- Wood-framed dormers and cupola ventilators
- Hanging gutters and downspouts
Interior
- Exposed roof trusses and wood ceiling
- Ceramic tile flooring
- Ventilation grilles
- Connection to campus-wide tunnel system

Assessment of Integrity

Assessment of integrity is based on an evaluation of the existence and condition of the physical features which date to a property’s period of significance, taking into consideration the degree to which the individual qualities of integrity are present. The seven aspects of integrity as defined in the National Register Criteria for Evaluation are location, design, setting, materials, workmanship, feeling, and association. As noted in *National Register Bulletin 15: How to Apply the National Register Criteria for Evaluation*:

> Location is the place where the historic property was constructed or the place where the historic event occurred. . . . Design is the combination of elements that create the form, plan, space, structure, and style of a property. . . . Setting is the physical environment of a historic property. . . . Materials are the physical elements that were combined or deposited during a particular period of time and in a particular pattern or configuration to form a historic property. . . . Workmanship is the physical evidence of the crafts of a particular culture or people during any given period in history or prehistory. . . . Feeling is a property’s expression of the aesthetic or historic sense of a particular period of time. . . . Association is the direct link between an important historic event or person and a historic property.\(^{40}\)

National Register Bulletin 15 defines integrity as “the ability of a property to convey its significance.”\(^{41}\)

The primary historical significance of the General Kitchen is as a context building on the campus related to its expansion and development in the last decades of the nineteenth century. The integrity of the exterior elevations and massing, the relationship of the General Kitchen to the Old Storeroom and Bakery, and the building’s place within the overall west campus are the most important physical aspects that convey this significance. The discussion below considers each of the seven aspects of integrity as they relate to the General Kitchen.

Integrity of Location. The General Kitchen retains a high degree of integrity of location in relationship to its site. The building location and the boundaries of the site are unchanged since the General Kitchen was completed in 1883.

Integrity of Design. The General Kitchen retains a moderate degree of integrity of design. The 1892 addition, although not part of the original design, was constructed within the period of significance. This addition was demolished after 1968 but before 1992, and the loss of this portion of the building reduces the integrity of the design as it evolved during the nineteenth century. Localized portions of the exterior elevations have been altered, including changes to original window openings and the addition of exterior mechanical appurtenances. The first floor interior space was originally utilitarian in nature with rooms for storage. The interior spaces have been renovated with contemporary finish materials. The second floor interior, consisting of the main kitchen spaces, was originally large, open spaces. The original spatial design of these kitchen spaces is intact, despite localized remodeling.

Integrity of Setting. The General Kitchen retains a high degree of integrity of setting. The area surrounding the campus of St. Elizabeths has developed from a rural to an urban location over time. The campus itself retains a fair amount of integrity due to the remaining large open spaces within the campus and the forested
bluffs overlooking the river and District of Columbia. As the west campus has evolved, the immediate setting of this building has changed as other buildings and landscape features have been added and removed. However, the General Kitchen, grouped together with Old Storeroom and Bakery, retains its context to an extent that recalls its original setting.

Integrity of Materials and Workmanship. The General Kitchen retains a moderate degree of integrity of materials and workmanship. Some original interior finish materials have been replaced during contemporary renovations, and many existing finishes are in deteriorated condition. Original exterior materials such as brick and stone and the original windows have survived in fair condition with localized areas of more significant deterioration. The original roofing materials have been replaced with contemporary asphalt shingles, and a temporary weatherproof enclosure conceals the original materials of the east elevation.

Integrity of Feeling. The General Kitchen retains a high degree of integrity of feeling. Despite some changes to the building and significant deterioration of the built fabric, the building still conveys the historic and aesthetic feeling of the period of significance.

Integrity of Association. The General Kitchen is significant primarily for its association with the history and ongoing development and expansion of St. Elizabeths west campus in the nineteenth century. As a contributing structure in the National Historic Landmark District, the General Kitchen conveys its role as a support structure on the campus and retains a high degree of integrity of association.
PHYSICAL DESCRIPTION AND CONDITION ASSESSMENT

OVERALL DESCRIPTION

The General Kitchen consists of two distinct volumes that are oriented at a ninety degree angle to each other and offset slightly to form an irregular L-shaped plan. These two volumes are referred to as the west wing and east wing herein.

The building occupies the center of a cluster of buildings that include the Bakery and the Old Storeroom. Both wings of the General Kitchen are constructed with load-bearing brick walls. The west wing is three stories tall with a gabled roof. The east wing has a hipped roof and is largely concealed by the surrounding buildings of the Bakery/Kitchen/Storeroom cluster.

The L-shaped plan adjoins the Old Storeroom at two locations via second floor level connecting links on its east and west sides. The north wall of the General Kitchen adjoins the Bakery. The building has an elevator that had apparently transported rail cars to the upper level that entered the lower level of the building from the Bakery to the north. Two small concrete loading platforms are located on the west elevation of the building that had apparently served the lower level.

The west campus of St. Elizabeths houses an extensive network of underground tunnels connecting multiple buildings, and totaling over 3,800 feet in length. The tunnel infrastructure served a variety of purposes, including transporting food and laundry, providing passageway for pedestrians, and housing the complex mechanical and electrical infrastructure of the campus. The tunnels are typically accessible through the basements of the buildings they serve.

The first tunnel network was created during the early development of the campus, prior to 1898, and connects the Center Building with surrounding buildings. This early tunnel system was then connected to a wood shaft transporting steam pipes and electrical conduit from the Boiler House. After the construction of the new Power House, these wood shafts were replaced with concrete tunnels to provide services to the older sections of the hospital. Additional tunnels were constructed during the Richardson expansion era of development on the campus, creating a continuous connection in the south end of the campus between the A, B, C and M Buildings. The Fan House, adjacent to the M Building, served as an exhaust for these tunnels.

The tunnels are typically constructed as brick masonry barrel vaults, although portions of the southern tunnel network are built of brick walls with a flat concrete ceiling. The floors are typically dirt or concrete, and the masonry elements are exposed and either painted or unpainted. The tunnels generally feature a narrow track bed which facilitated the transfer of materials from building to building using small rail cars. There are intermittent vents throughout the tunnels. Full height clearance is not provided in all tunnels due to the presence of suspended pipes. Over the years, some of the tunnel portals have been bricked off, denying access to those portions of the tunnel system.

The General Kitchen supplied food and supplies for much of the surrounding campus. As the hospital began to favor the detached cottage plan of development it became important to maintain a tunnel system from the General Kitchen. There were at least three tunnel branches extending from the building. A short tunnel entered the building from the west and was connected to the

42 The tunnel system was first documented in a plat map included in the 1899 Annual Report. The elaborate tunnel system linked many of the west campus structures. The 1899 Annual Report requested funds totaling $3,000 for the repair of a collapsed tunnel under the Laundry Building (now known as the Construction Shop, Building 49) caused by a heavy summer rain and subsequent flooding of the tunnel.
West Lodge (no longer extant). A second tunnel extended north to the Center Building group (Building 1 through 6) and south to the Construction Shops (Building 49). The third tunnel originated from the east end of the General Kitchen and was connected to Home (Building 36), Atkins Hall (Building 31), Relief (Building 32), the Allison group (Building 23, 24, 25, and 26), Toner (no longer extant), and Oaks (no longer extant) through various branches and spurs tunnels. All of the tunnel openings have been infilled with concrete block and are currently not accessible.

EXTERIOR EVALUATION

Typical Exterior Materials and Features

Although separated spatially, both wings of the building are unified by their use of the same masonry, fenestration patterns and decoration. The exterior walls are constructed using red brick laid in a common bond pattern with headers at every sixth course. The elevations follow a consistent fenestration pattern of punched windows that are symmetrically spaced across their elevations. Each window features a simple stone sill that projects from the wall plane, and the windows of the upper floors have brick hood moldings.

Description

Roof

The west wing has a gabled roof with three dormers symmetrically spaced on its east and west slopes. Aligned with these dormers are three monitors on the ridgeline. The east wing also has three monitors on the main ridgeline of its hipped roof. The monitors of the east wing are clad with a silver asphalt membrane.

The eaves of each roof are closed with wood soffits and the gabled end of the three-story volume is finished with ogee-molded fascia boards. Originally both roofs were clad with slate, but they are currently covered with grey asphalt shingles.

The base of each roof slope is fitted with a hooded sheet metal gutter. Galvanized sheet metal downspouts are typically installed at each corner of the elevations. Additional downspouts are installed in the center of elevations that exceed 25 feet in length. All the downspouts discharge on grade, either directly or into a black flexible tubing that discharges within 10 feet of the base of the building.
West Elevation

The west elevation consists primarily of a 74 foot long expanse of the west wing. Wedged between this volume and the Bakery is a three-bay section of the General Kitchen that is approximately 19 feet wide. It is aligned with the rear wall of the three bay volume and fronted by a westward-projecting addition with a low-slope flat roof (Figure 15).

The addition is a one story brick structure that features a doorway that is flanked by two windows (Figure 16). The roof was originally designed as a deck with an iron railing. It has since been converted into a low-pitch shed roof, but the access door from the second floor of the General Kitchen remains. The north wall of the addition is brick with no openings. Above the addition, the second story of the General Kitchen has a similar fenestration pattern of a door flanked by windows. All three masonry openings feature the brick hood moldings that are typical of the General Kitchen. The windows have the typical stone windowsills.

The main portion of the west elevation contains eight window bays. They are arranged with a pair of windows at the centerline of the elevation and groups of three windows to the north and south. As is typical of the General Kitchen, all the second floor windows have brick hood moldings. The first floor windows have a simple segmental arch header composed of a double course of header bricks.

The windows of the second floor remain as they were originally designed. The first floor has been altered slightly, as evidence by the non-matching infill brick in a few of the openings. The third window appears to have originally been a doorway. It is slightly wider than the other windows and its sill is concrete, rather than stone. There are two vertical joints in the masonry beneath the sill than mark the edges of the original door opening (Figure 17).
Conversely, the window in the fifth bay has been altered to become a small door to a refrigerator or ice room. A wood insulated door with heavy strap hinges has been installed in the lower portion of the opening and the upper portion has been infilled with brick (Figure 18). In front of this opening is a small concrete bulkhead, used to assist loading. An open concrete frame loading dock is set beneath the windows in the first and second bays of the first floor. There is a broad door in the sixth bay of the first floor. The current door is a single panel metal clad unit set in a metal frame; however, the opening appears to be original.

The original slate shingles on the sidewalls of the gabled dormers have been replaced with asphalt, but the wood trim on the eaves and window surround is original. The eaves have a wood paneled closed soffit and the fascia is trimmed with Roman ogee profiled moldings. The entablature features tongue and groove wood paneling that has been incised with holes for decoration (Figure 19).

North Elevation

Two distinct walls, separated by the bulk of the Bakery Building, make up the north elevation. The western portion is a three-story expanse with four bays of windows (Figure 20). There is a single window on the third floor that is centered under the gable. It features a brick hood molding, as do the four windows of the second floor. Although the first and second story windows align with one another, they are not evenly spaced across the elevation.

The easternmost bay of the first floor is covered by the projecting one-story addition. The westernmost window bay has been converted into a door, as evidenced by its narrow opening and infill brick above the existing door frame. The two windows that are centered in the first floor elevation have been altered slightly; a reinforced concrete sill has been installed over the original slate sill (Figure 21).
At the east end of the General Kitchen is a two-bay wide two-story continuation of the north elevation. This portion of the General Kitchen continued eastward into the General Kitchen Extension, a four-story building that was demolished in 1982 (refer to Figures 8 and 9). The extant portion has two windows on the second story. The first floor is partially below grade and set behind a concrete retaining wall (Figure 22). It features two door openings; one is wide with a semi-circular arch and the other is a typical door opening with a segmental arch composed of two courses of header bricks.

Both of the original door openings have been infilled with brick. The conventional-sized door is fully-infilled and features a louvered metal exhaust window. The archway has been partially infilled to accommodate a conventional-sized door. The elevation features a brick dogs tooth cornice that matches the decoration of the Bakery. Above this decoration is a molded sheet metal cornice.

East Elevation

When the General Kitchen Extension was demolished in 1982, the truncated remainder of the General Kitchen building was crudely sealed. Currently it is clad with rolled asphaltic membrane lapped horizontally across the elevation (Figure 23). Projecting from the southern end of this elevation is a one-story extension with a shed roof. The extension houses pumps and machinery that was once an interior room of the General Kitchen Extension. It is now finished with painted stucco and converted into an outdoor shed.

Set back approximately 75 feet from the east wall of the shed is a three-bay wide section of the east elevation. This elevation is comprised of a one-bay wide “rear” volume of the three-story portion of the General Kitchen and a two-bay volume of an extension that connects the two main portions of the building (Figure 24).
The two story extension features four windows, each with segmental arch headers composed of two courses of brick. The sills of the second story windows have been replaced with concrete. The lower story sills are white limestone. The one-story “rear” volume is only six feet wide and features a single first story window. This portion of the elevation is largely obscured by a sheet metal pipe vent.

Courtyard (South) Elevation

The courtyard elevation is the main visible exterior expanse of the east wing of the General Kitchen. The courtyard is very similar in appearance to the west elevation of the west wing of the General Kitchen. It has eight window bays organized into two bays flanking the center of the elevation and two sets of three window bays at its east and west ends.

At its east end, the elevation features the elevated connecting link between the General Kitchen and the Old Storeroom. Beneath the connecting link is a broad semi-circular archway that has been sealed with brick (Figure 25). The fourth bay of the first floor is a door that has also been sealed with brick.

South Elevation

Separate from the courtyard elevation is the south elevation of the west wing of the General Kitchen. It is three stories in height and composed in five window bays. The third and second floors have windows centered beneath the peak of the gable. On either side of the second floor window is a pair of windows, creating a symmetrical elevation (Figure 26). The windows of the second and third floors feature hood molding that are typical of the building. The first floor has only two windows. They are on the west side of the elevation, aligned with the second story windows. Originally there was a centrally located door and another pair of windows on the east side of the elevation. These elements, as well as their header bricks and sills have been removed, leaving only a slight discrepancy in the brick
pattern to mark their location (Figure 27). Like
the north elevation, the roof features molded
wood fascia boards at its eaves.

Condition Assessment

Locations of conditions observed are noted on
the elevation drawings included in Appendix B.

Masonry

In general, the brick masonry of the General
Kitchen is in fair condition, although it does
exhibit deterioration of the mortar and brick
related to water management problems. There
are also isolated incidences of displaced
masonry, typically occurring in the window
headers. These problems are most pronounced
on the courtyard (south) elevation. The east
elevation of the building has not been adequately
sealed following the demolition of the General
Kitchen Extension.

- Each elevation exhibits mortar loss and
 erosion, resulting in open mortar joints
 (Figure 28). This occurs most frequently in
 areas that have a high exposure to water run-
 off, such as masonry adjacent to downspouts
 or near grade.
- Open mortar joints and step cracking were
 also noted in areas that have been prone to
differential settlement (Figure 29). The
building experienced significant cracking
and masonry displacement due to
differential settlement. Though these have
been repaired, some areas are exhibiting
new cracks (Figure 30).
- Some of the previous repairs, such as the
 rebuilding of the window headers in the east
courtyard elevation, are poorly executed
 (Figure 31).
- Some of the brick has deteriorated at an
 accelerated rate. The loss of the exterior fire
 skin is related to the use of inappropriate
 mortar to repoint (Figure 32). The mortar,
 which appears to have a high cement
 content, is less permeable than the brick,
 which causes entrapped moisture to express
 through the brick, accelerating its wear.
The elevations exhibit staining of the masonry caused by pigeon droppings, typically above the second story window headers (Figure 33).

Each elevation exhibits water related staining and organic growth (Figure 34).

There is a pattern of staining beneath each of the window sills and over the top of the projecting hood moldings. This appears to be caused by a combination of run-off of airborne soiling and organic growth.

Sheet metal ventilation stacks left embedded in the masonry of the north and east elevations are corroding and staining the masonry with rust (Figure 35).

Roof

- The asphalt shingles appear to be in fair condition. There was no significant staining or damage noted on the interiors of the building to indicate that the roof is leaking.
- The poorly patched east end of the building is exhibiting water damage on the interior. The temporary rolled asphalt membrane is not an adequate weather resistant cladding for this location.

Downspouts and Drainage

- The rain gutters are in fair condition. No instances of separation of the metal, detachment or sagging were noted.
- Downspouts are typically discharging at grade onto concrete sidewalks and onto the concrete of the courtyard. This poses a risk of water backing up against foundations, intruding into the building and causing surface staining, efflorescence and organic growth.

Wood Elements

- The fascia and ogee molding on the cornices are generally in fair condition. All exhibit paint failure, but the underlying wood appears to be sound and does not exhibit checking and grain separation. Some separation of the joints was noted.
The incised architrave decoration of the dormers is typically in fair condition. All of the dormers are exhibiting paint loss and failure. The wood substrate is deteriorating due to exposure to sunlight and rain.

Metal Elements

- Sheet metal cornice of the north elevation is in fair condition. No visible signs of rust were observed and the cornice only displays isolated areas that are dented.
- The galvanized sheet metal cladding of the breezeways is in poor condition. The east breezeway exhibits extensive corrosion. There are large holes in the cladding on the underside of the connecting links where the metal has completed rusted (refer to Figure 25).

Windows and Doors

In general, the windows are in fair to poor condition. Because all of the windows are covered with painted plywood, their condition will be assessed in the Interior Assessment portion of this report.

The exterior doors typically consist of contemporary metal clad units. In general, the exterior doors are in fair condition, but are not original and do not contribute to the historic character of the building.

Figure 33. Pigeon droppings staining masonry.

Figure 34. Efflorescence and organic growth caused by excessive moisture levels in the masonry.

Figure 35. Rust staining on masonry caused by corroding sheet metal stack.
INTERIOR EVALUATION

First Floor

Description

The utility and need for fire-proof construction is evident in the first floor of the General Kitchen. In several rooms of the first floor the ceilings are constructed with brick arches sprung between steel beams. The arches are plastered and painted, but left exposed in some rooms. Other rooms display the same system of steel beams, but the arches are infilled, creating a flat ceiling. In each of the rooms, the ceilings are obscured by suspended fluorescent lighting fixtures, surface mounted electrical conduit and suspended space heaters (Figure 36). Other typical features of the first floor are six-over-six wood double hung windows set in wood frames. The floors are concrete and left unfinished or clad in ceramic tile.

The only entrance to the first floor of the General Kitchen is through a door in the west elevation. It opens into room 1034, which is a large space with quarry tile flooring and a plastered brick arch ceiling. The most recent use of the first floor of the western half of the General Kitchen was as a Creamery. As such, these rooms (rooms 1023, 1031, 1032, 1034, 1036 and 1037) typically feature tile flooring and white subway tile wainscoting for sanitary reasons (Figure 37). Above the tile wainscoting, the walls are typically plaster applied to brick masonry.

In the northeast corner of room 1034 is the entrance to a lavatory (room 1035) with concrete ceilings formed over corrugated sheet metal. The walls are plaster and with mosaic tile wainscoting (Figure 38). The floor is also clad with mosaic tiles. There are two toilets, a sink and a shower stall, all of which are contemporary fixtures.
A door in the north wall of room 1034 opens into room 1031 and the rest of the building (Figure 39). Both rooms 1034 and 1031 have enclosed walk-in refrigerator units (rooms 1037 and 1032). Typical of their time of construction, the walls and ceiling of these spaces are painted plaster behind which are thick layers of cork for insulation. There is a pass-through freezer door in the exterior wall of room 1032 communicates to the outside loading dock of the building.

The north wall of room 1032 has a fluted cast iron column incorporated into it. Similarly, room 1031 has a cast iron column in the center of room (Figure 40). The columns support concrete beams and a concrete slab ceiling. A wood framed partition wall separated the large space of rooms 1031 and 1023 into two interlocking L-shaped spaces.

Beyond room 1023 are the rooms of the eastern half of the General Kitchen that comprise the first floor of the two-story volume of the building. These rooms are constructed using the same elements as seen in the Creamery, but lack the same level of finish. They typically have unfinished concrete slab floors and walls that are comprised of painted brick. Rooms 1024, 1025, 1033 and portions of 1022 retain their original brick arch ceilings. The main portion of room 1022 has a ceiling that is constructed of reinforced concrete supported by concrete posts and beams (Figure 41).

Room 1024 is a large space with a rectangular plan (Figure 42). It has a concrete slab floor, brick arch ceiling with plaster finishes and exposed lower flange of steel beams. At the northwest end of this room is a corridor that dead-ends at a sealed doorway (Figure 43). In the east wall is a double leaf wood door set beneath a segmental brick arch and featuring a wood lintel (Figure 44).

This door opens into room 1022, which has painted brick walls and a board formed concrete ceiling. In the center of the room is a freight elevator that is encased in brick walls. The floor
is concrete and features narrow gauge rails set into it (Figure 45). Along the east wall is a flight of concrete stairs (Figure 46). Opposite the stairs is a door opening that has been sealed with brick and concrete masonry unit infill (Figure 47).

Off the southeast corner of the room 1022 is a lavatory with plaster clad brick arch ceilings walls. The floors are clad with white hexagonal tiles. The room features a single toilet, urinal and sink fixture.

Beyond these rooms is a long north-south corridor composed of a series of semi-circular brick archways (Figure 48). While both ends of the corridor are sealed, it was likely originally designed as an open breezeway. The ceiling of this space is built of reinforced concrete and the walls are brick.

To the east of this breezeway was the General Kitchen Extension, a building that was demolished in 1982. The only extant portion of the extension is room 1030, which houses steam pipes. The room has brick walls with a concrete cap beam that supports a wood framed shed roof. The roof diaphragm is plywood. A typical six-over-six wood window remains in its original wood frame in the south wall.
Condition Assessment

- The plaster and paint finishes in all the walls typically display deterioration in the form of flaking and alligatored paint, cracking, stains and dissolution of the plaster substrate (Figure 49).
- In general, the walls and ceiling finishes are in poor condition throughout the first. Moisture has contributed to the failing paint and deterioration of the plaster. In some rooms, these finishes have failed completely, revealing the brick structure (Figure 50).
- The plaster infill covering the brick arched ceiling of room 1023 is cracking and failing (Figure 51).
- The concrete ceiling in room 1029 is displaying concrete spalling caused by the corrosion of embedded steel reinforcement (Figure 52).
- The plaster ceiling and cork insulation in room 1037 has failed and collapsed onto the floor of the walk-in refrigeration unit. The ceiling of room 1032 is significantly deflected, suggesting either detachment of the cork insulation or failure of the wood framing, or both (Figure 53).
- Walls in room 1035 are bulging outward and displaying water-related plaster failure (Figure 54).
- Paint over the brick walls in the rooms of the east portion is contributing to the deterioration of the brick by trapping moisture within the walls (Figure 55).
- In general, the windows are in poor condition. They are suffering from wood rot caused by the heightened moisture levels in the first floor (Figure 56).
- The wood doors are typically in fair to poor condition, depending on their location. In general, they are suffering from paint loss and wood rot, but are salvageable.
- The door to room 1028 is missing.
Figure 49. Paint and plaster deterioration on walls.

Figure 50. Failing plaster finish on ceiling.

Figure 51. Cracking plaster over the brick arch ceiling of room 1023.

Figure 52. Spalling concrete ceiling caused by rusting reinforcement.

Figure 53. Deflecting plaster ceiling in room 1032.

Figure 54. Bulging plaster wall in room 1035.
Second Floor

Description

The second floor contains the two large rooms of the kitchen. Room 2016 is a large open space that is 72 feet long and 42 wide, encompassing the entirety of the floor plan of the west wing. The double height space features exposed wood trusses and ceilings that are clad with tongue and groove decking. Symmetrically spaced along the east and west slopes of the ceiling are three eight-light operable dormers. The walls are clad with plaster and regularly fenestrated with six-over-six wood windows that feature simple wood casings. The floors are clad with red quarry tile that has a recessed drainage trough; (Figure 57), embedded narrow gauge tracks; and an implied path defined by a pattern of broken tile flooring (Figure 58). Recessed within the east wall is an industrial-sized oven (Figure 59). Also in the east wall, at the southern end of the room is a pair of double leaf five-panel wood doors (Figure 60). Above the doors is a four-light fixed transom. These open into the breezeway that connects to the Old Storeroom.

In the north end of the east wall, the original large flat arch opening between the two kitchens has been narrowed by the introduction of a steel channel and gypsum board wall (Figure 61). Set within this wall is a hollow core wood door with a fixed light and contemporary hardware (Figure 62). The irregular shape of the wall creates a north-south corridor that terminates at a door opening onto the roof of the one-story addition on the west side of the building (Figure 63).

The kitchen in the east wing originally featured an open plan, similar to room 2016. It has been subdivided by contemporary partition walls and a brick-walled freight elevator that is free-standing in the center of the room (Figure 64).
Figure 57. Drainage trough integrated into floor of room 2016.

Figure 58. Character defining elements of the floor include narrow gauge track and patterns of grid and ‘broken tile’ paths.

Figure 59. Oven set within east wall.

Figure 60. Entrance to the breezeway to Old Storeroom.

Figure 61. Contemporary wall, with metal door, between the two kitchen rooms.

Figure 62. Doorway between the two kitchens. Note the water damage to the ceiling and walls.
The ceilings retain their original tongue and groove decking as well as the exposed wood trusses. Set in the peak of the roof are two large skylights. At the west end of the roof, on axis with the skylights is a ventilation monitor. It is fitted with a large exhaust fan and can be accessed via ladder in the trusses (Figure 65). Ventilation is also provided through the walls via internal ducts that are fitted with metal grilles (Figure 66).

The east kitchen has five windows in its south wall. Each is fit with a typical six-over-six wood double hung sash set in a wood frame (Figure 67). There are few doors in the open space of the kitchen. Where they occur, they are typically four panel wood units (Figure 68).

To the east of the east kitchen areas are two smaller rooms (2018 and 2020) separated by an alcove. The alcove is set beneath a semi-circular arch and was originally a corridor to the General Kitchen Extension. It terminated in a rough brick wall with a wood framed and brick infill (Figure 69). There is a doorway in the truncated corridor that opens into room 2018. There is a sealed door in the east wall of room 2018 that would have originally connected to the General Kitchen Extension.

Room 2020 is accessed from the main kitchen space. Originally, it was connected to the elevated breezeway between the General Kitchen and the Old Storeroom. The doorway to the breezeway has been sealed and covered with gypsum board. Both rooms have plaster-clad ceilings and walls and red quarry tile floors. The rooms are illuminated by suspended incandescent lights and heated by steam pipes mounted to the walls beneath the windows as well as steam radiators.
Figure 66. Metal ventilation grilles.

Figure 67. Typical window.

Figure 68. Typically four-panel wood door in partition wall between room 2019 and the main area of the east kitchen.

Figure 69. Sealed corridor that originally connected to the demolished General Kitchen Extension.

Figure 70. Significant racking of the wood frame creating a gap between the sill and the lower sash.

Figure 71. Failing gypsum board ceiling caused by leaking roof, also note the racked door frame.
Condition Assessment

- The paint finishes of the ceiling and trusses are extensively alligatored and flaking. The wood substrate appears to be in good condition, but close examination was not possible.
- The quarry tile floors are in fair to good condition.
- Windows are in fair condition. The glass and wood elements are intact and show minimal signs of wood rot; however, a few of the windows are racked (Figure 70).
- The original doors are in fair condition. There are a few contemporary doors that are also in fair to good condition; however, these are not original elements and do not contribute to the historic character of the building.
- The ceiling in room 2018 is failing due to water intrusion caused by a leaking roof (Figure 71). The plaster walls beneath this portion of the ceiling have also been damaged by water intrusion.
- The area between the two kitchens is displaying damage to the walls and ceiling caused by water intrusion. This is likely the result of inadequate or failing flashings between the two roof slopes of the General Kitchen wings.
- The transom light above the door to the breezeway has a broke light and the entire transom is covered by plywood.

STRUCTURAL EVALUATION

Description

The General Kitchen is essentially composed of two rectangular two-story brick masonry wings that form an L-shape in plan. The two wings do not have basement levels. The west wing has a gable roof with three dormers on each side, and the east wing has a hip roof. The lower level floors appear to be slabs on grade and the second floor levels have a variety of structural systems that are typically supported by wrought iron or steel beams. Timber trusses support the roofs over each of the building parts.

Walls and Floors

The exterior walls and foundations of the building are comprised of clay brick masonry and are about 18 inches thick. In the east wing, the second floor level is supported by the exterior walls and an interior masonry wall that is approximately 13 inches thick (Figure 72). In the west wing, the floors are also supported by 18 inch thick exterior walls and an interior bearing wall as well as cast iron interior columns (Figure 73).

A single-story extension is located at the east end of the east wing. The exterior walls of this portion of the building are clad with what appears to be a cementitious stucco coating. The small building extension has a shed roof framed with 2 inch by 6 inch rafters spaced about 24 inches on center. The east wall of the two-story portion is over clad with wood that is covered with a rolled-roofing granular surfaced bituminous sheet (Figure 74). The remaining exterior walls are typically exposed brick masonry and have segmental brick masonry arches that support the exterior masonry wythes of the wall above window and door openings. Solid sawn wood lintels are provided to support the interior wythes. Several of the windows and door openings have been modified or filled in with masonry.
The connecting link to the Old Storeroom on the east wall of the west wing has been built out with a two-story structure that is enclosed with brick masonry walls constructed in 1934. This structure encloses the first and second floor levels around the connecting link between these buildings. Partial views of the exterior masonry walls on the north and south side of this link are shown in Figures 75 and 76, respectively.

On the northwest corner of the building is an additional single-story extension located at the ground floor level where the two wings meet. The single-story addition has brick masonry walls that are approximately 18 inches thick and support a flat roof framed with 2 inch by 10 inch rafters spaced about 15 inches on center. A partial view of this portion of the building is shown in Figure 77.

The general layout of the second floor framing systems is shown in Appendix C of this report. The majority of the second floor levels in the two building portions are constructed with steel beams that support brick arch floor assemblies (Figure 78). The east wing generally houses the elevator shaft that transports the rail cars to the second floor level. The second floor structure in this part of the building has five different floor framing systems and includes areas of wood floor joist construction at the east end as well as concrete floor systems. Partial views of these floor assemblies are shown in Figures 79 and 80.
Figure 75. Partial view of north masonry wall that encloses the west link between the General Kitchen and the Old Storeroom.

Figure 76. Partial view of south masonry wall that encloses the first floor level beneath the west link between the General Kitchen and the Old Storeroom.

Figure 77. Partial view of the single-story extension at the northwest corner.

Figure 78. Schematic floor section through brick arch assembly taken from The Architects’ and Builders’ Handbook by Kidder-Parker, 18th Edition (New York: John Wiley & Sons, Inc., April 1949).

Figure 79. View of concrete floor slab at the east end of the lower level of the east wing looking toward the north. Note the arched opening at the end wall.

Figure 80. View of wood framed floor at the east end of the lower level of the east wing looking toward the north. Note the arched opening at the end wall.
Cast-in-place concrete slabs reinforced with expanded steel diamond mesh, as well as slabs with integral cast-in-place concrete beams, are located along the north side of the east wing. The type and or extent of reinforcing within the concrete assemblies could not be determined as part of this structural inspection. Partial views of the diamond mesh reinforced concrete and concrete beam floor framing are shown in Figures 81 and 82. Partial views of the second floor brick floor arch assemblies at the south side of the east wing are shown in Figure 83.

The west wing has two floor structure assemblies that include the brick floor arches and an apparent steel beam and concrete assembly. The brick floor arch floor system on the south side of the west wing is shown in Figure 84. An additional floor framing assembly in the west wing on the north side is concealed beneath the finished ceiling (Figure 85). This specific structural assembly was not accessible.

Figure 81. View of concrete floor with diamond mesh reinforcing.

Figure 82. Partial view of concrete floor structure at the north side of the east wing.

Figure 83. Partial views of the second floor brick floor arch assemblies at the south side of the east wing. Also note the concrete floor.

Figure 84. Brick floor arch viewed from the lower level at the south side of the west wing.
Roofs

The east and west wings have a hip roof and gable roof respectively. Each of these roofs is framed with what appear to be 4 inch by 8 inch rafters spaced about 24 inches on center that span up the slope of the building from the exterior walls to purlins. The purlins span approximately 10 to 11 feet between king-post roof trusses that span approximately 39-1/2 feet across the width of each wing of the building. Each wing has six trusses with timber top and bottom chord members and includes wood diagonal web members as well as vertical steel rods. The east wing has four triangular shaped trusses with trapezoidal shaped trusses at each end to frame out the hip roof. The west wing has six triangular trusses.

The roofs create open cathedral ceilings to the second floor spaces and the rafters are finished with painted ceilings. Three wood-framed monitors are located along the ridge of each of the two roofs. The west wing has six gable roofed dormers (three on each side) that are also framed with wood. Partial views of the roof framing in the east and west wings are shown in Figures 86 and 87 respectively.
Condition Assessment

Notable conditions observed during the structural inspection of the General Kitchen portions are summarized below. Additional structural conditions are noted on the drawings included in Appendix C.

- The exterior masonry walls are intact but require maintenance. Step cracks that have been repaired and have reopened exist on the south elevation of the east wing. These cracks are consistent with distress attributed to previous settlement. However, this condition appears to be older distress and not indicative of active movement (Figure 88). Additional cracks extend out from windows at several locations on the building. In addition, eroded mortar and efflorescence exist on the exterior walls, indicating that moisture infiltration has been problematic (Figure 89).
- Plants were also observed to be growing from the exterior brick masonry near downspouts and at the base of the wall as seen in (Figure 90).
- The added north wall around the building link that connects the General Kitchen to the west wall of the Old Storeroom exhibits eroded mortar joints and distressed masonry that are consistent with water damage from above of the building.
- Water damage of interior wall finishes is located throughout the lower floor level in both wings. Eroded clay brick masonry consistent with rising damp exists at the base of the wall. Water damaged interior finishes are also consistent with distress attributed to moisture infiltration (Figure 91).
- The lower level floor is generally intact, with no significant damage or distress observed.
Figure 91. Water damaged interior finishes at the lower level of the east wing.

Figure 92. Close-up view of water damaged wood framing within the east wing.

Figure 93. Water damaged finishes and minor mortar erosion and surface corrosion of beams at brick arch floor observed in the east wing.

- The wood floor framing located at the second floor level is in poor condition, with extensive moisture damage and advanced decay (Figure 92). Localized crushing and deterioration of the wood floor joists was visually apparent.
- The concrete floor framing systems located on the north side of the east wing appear to be intact and in serviceable condition. Although some of the diamond mesh reinforcing is exposed at the bottom of the slab, no significant cracking or deformations of the floor system was observed.
- The brick floor arch systems were observed to be intact with mortar erosion and minor distress, and appear to be in serviceable condition with repair (Figure 93). The extent of steel rod reinforcing within the arch construction was not determined as part of this evaluation.
- The wood framed roof located above the building extension on the east side of the east wing has apparent mold throughout the interior face of the plywood roof deck. The presence of mold is consistent with excessive interior moisture along with improper insulation at this roof system (Figure 94).
- The roof framing located over the single story portion of Building 45 has been partially rebuilt and includes newer 2 inch by 4 inch wood framing and plywood decking over the original roof rafters. This framing currently functions adequately to enclose the building but has apparent mold and moisture damage (Figure 95).
- The roof framing of the building is generally intact. However, evidence of water infiltration is apparent, indicating that roof leaks have been problematic. In addition, given the deteriorated state of the parapet around the building perimeter, it is anticipated that some water damage to the roof framing is present. The full extent of water damage to the roof deck could not be determined during this inspection.
The masonry walls at the second floor level have experienced moisture damage that is apparently attributed to water infiltration from the roof and or exterior gutters. Distressed conditions include eroded mortar, displaced brick units, and advanced decay at isolated wood lintels (Figure 96).

The roof framing is generally intact, although the rafters at the north end of the hip roof over the east wing exhibit evidence of moisture staining and apparent water damage (Figures 97 and 98). The extent of actual water damage to this roof framing could not be confirmed during this inspection.

The roof trusses are generally intact although water stained finishes observed near some of the supports indicate that underlying water damage to embedded wood components may be present (Figure 98). Several of the roof trusses supporting the gable roof over the west wing have apparently been modified. As shown in Figure 99, the end brackets of the truss have been inserted between the top chord and bottom chord along the east wall of this portion of the building.

The roof monitors and dormers were observed to be intact with no significant evidence of damage or distress observed. These framed components of the roof structure were not accessible for close-up visual inspection during this evaluation.
MECHANICAL, ELECTRICAL, AND PLUMBING SYSTEMS EVALUATION

Description

The heating system has been retrofit with direct hot water radiation utilizing cast iron radiators, of which there are numerous styles are present throughout the building. However, many of the radiators are missing. In addition there are ceiling-mounted gas-fired space heaters in the upper floors. Natural ventilation was provided through operable windows.

The General Kitchen has a main switchboard in the basement. The fuses are plug type and many of the connections are old.

The plumbing supply and waste system is composed of cast iron pipes and fittings with some additions in polyvinyl chloride (PVC).

Condition Assessment

The existing hot water piping and radiators are in very poor condition.

The electrical switchboard has suffered water damage and appears to have been stripped of all of its individual components. The other panelboards appear to be more than thirty years old, are severely corroded, and are in extremely poor condition.

The plumbing supply and waste system is in poor condition.
RECOMMENDATIONS FOR TREATMENT

HISTORIC PRESERVATION OBJECTIVES

The U.S. National Park Service has developed definitions for the four major treatments that may be applied to historic structures: preservation, rehabilitation, restoration, and reconstruction. The four definitions are as follows:

Preservation is defined as the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. New exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a preservation project.

Rehabilitation is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values.

Restoration is defined as the act or process of accurately depicting the form, features, and character of a property as it appeared at a particular period of time by means of the removal of features from other periods in its history and reconstruction of missing features from the restoration period. The limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a restoration project.

Reconstruction is defined as the act or process of depicting, by means of new construction, the form, features, and detailing of a non-surviving site, landscape, building, structure, or object for the purpose of replicating its appearance at a specific period of time and in its historic location.

The treatment *rehabilitation* has been designated for the buildings at St. Elizabeths west campus, given their historical significance and planned repair and alteration for compatible reuse. The Secretary of the Interior's Standards for Rehabilitation are as follows:

1. A property shall be used for its historic purpose or be placed in a new use that requires minimal change to the defining characteristics of the building and its site and environment.
2. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.
3. Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.
4. Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.
5. Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a property shall be preserved.
6. Deteriorated historic features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual

43 *The Secretary of the Interior’s Standards for the Treatment of Historic Properties.*
qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

7. Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.

8. Significant archeological resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken.

9. New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

10. New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.44

REQUIREMENTS FOR WORK

Guidelines and Standards for Treatment

Guidelines and requirements for treatment have been defined based on the preservation objectives outlined above for St. Elizabeths west campus. All treatment guidelines and recommendations were developed in accordance with the Secretary of Interior’s Standards for Rehabilitation. GSA has indicated that the buildings will be repaired and adapted for continued use as part of a comprehensive work effort for each building, therefore prioritization or phasing of specific repairs is not required for purposes of this study. However, should phasing of work be required, the basic requirements outlined below are presented in general order of descending importance.

Because the buildings are currently accessed by representatives of GSA and the user agencies, as well as consultants to the GSA and members of the design teams, it is important to note that potential safety hazards (such as deteriorated floor systems) do exist and that structural stabilization may be required as work on the buildings proceeds.

Guidelines for Prioritization of Work

Based on the condition assessment performed as part of the Historic Structure Report/Building Preservation Plan study, the following general prioritization is indicated for anticipated work on the subject buildings. Depending on the sequence and phasing of work, several of these categories of work (e.g., exterior envelope weatherproofing and modifications for reuse) may be performed simultaneously.

1. Structural Stabilization. Implement structural stabilization repairs as needed to address structural deficiencies and unstable conditions, such as repairs to deteriorated floor systems.

44 Ibid.
2. Exterior Envelope Weatherproofing. Perform exterior repairs to prevent water infiltration and deterioration of building envelope materials, and to address conditions that may lead to continued deterioration and loss of historic fabric. These types of repairs include closure of openings in walls and roofs, repairs to roofing and flashings, masonry repairs, and window and door repairs.

3. Modifications for Reuse. Perform repairs and modifications to the building interior and systems to permit reuse as offices and for related support functions. These types of repairs and modifications include work required to meet code, for disabled access, for egress, for structural capacity upgrades, to rehabilitate interior finishes, and to provide new mechanical, electrical, and plumbing systems to permit building occupancy and reuse.

4. Cyclical Inspection and Maintenance. In addition to the specific repairs recommended, cyclical maintenance tasks such as inspection, painting of exterior wood and metal elements, pointing of mortar joints in brickwork (long-term), replacement of joints sealants, and other ongoing maintenance tasks must be continually implemented to avoid damage to the historic building fabric and to reduce the need for large-scale repair projects in future.

All work performed on the subject buildings should be documented through notes, photographs, and measured drawings and/or sketches, or with as-built annotations to construction documents at project completion. These records should be permanently archived as a record of the buildings prior to adaptive reuse, for future reference, and to provide information for future maintenance of the buildings. In addition, these records will allow future observers to identify which materials are historic.

2008 Preservation Guidelines

The St. Elizabeths West Campus: Preservation, Design, & Development Guidelines were developed to provide guidance for the present and future stewardship of the National Historic Landmark and to assist in the preservation of the historic resources and overall character of the historic site. The guidelines, using the Secretary of the Interior’s Standards as a foundation, provide general guidance for anticipated modifications such as rehabilitation of the historic buildings and landscape, placement and design of new construction and landscape features, and proposed new access roadways.

The guidelines are intended to be neither technical nor prescriptive. Specifically, the Preservation, Design, & Development Guidelines note that the guidelines have been prepared to assist in applying the Secretary of the Interior’s Standards to specific project work, are not intended to provide case-specific recommendations, and “cannot, in and of themselves, be used to make essential decisions about which features of the historic buildings and landscapes should be saved and which can be altered.” Instead, the guidelines are intended to provide philosophical consistency for the work as well as guidance during the design process, prior to treatment.

The Preservation, Design, & Development Guidelines provide the following general treatment standards for the buildings of the west campus:

Building Treatment Standards

The West Campus contains a variety of architectural styles ranging in age from the early 1850s to the 1940s. It is critical that rehabilitation retain the integrity and historic fabric of the buildings. The building

treatment standards expand upon the Secretary of the Interior’s Standards for Rehabilitation. Building specific preservation treatment zones and preservation priorities will be established by the Historic Structure Reports or Historic Building Preservation Plans which will be prepared for each building.

1. All work on historic buildings and structures will be undertaken in accordance with the Secretary of the Interior’s Standards.

2. Minimum alteration will be made to the historic buildings, structures or site to meet current use and code requirements.

3. Deteriorated building fabric will be repaired rather than replaced. When material deterioration prohibits repair, replacement materials shall match the original in material, color, and texture.

4. Rehabilitation work will retain original windows, window openings, doors and door locations.

5. All work will be designed and executed in a manner that minimizes damage to or removal of character defining elements or significant fabric of the building, structure or setting.

6. All exterior work will be executed in a manner that minimizes damage to significant landscapes or site features adjacent to the building or structure.

Interior Treatment Standards

There are spaces, materials and details at the interior of the buildings that are significant and character defining. The character defining spaces, materials and details will be determined by the Historic Structure Report or Historic Building Preservation Plan prepared for each structure. Rehabilitation of the interiors of the historic buildings requires new uses that will be compatible with existing space configuration, that can utilize identified restoration zones of the building and that will limit the need to alter or remove the significant interior spaces or materials. The character defining spaces, materials and details and the sense of time and place associated with the interior must be preserved and respected.

1. Proposed design and new uses will integrate and preserve the original interior plan configuration, spaces, features, and finishes.

2. All work will be executed in a manner that retains and does not damage interior features, finishes and original room configuration.

3. Proposed design should include original stairs and their historic configuration, including decorative elements.

4. Proposed design will retain significant features of original mechanical systems.

5. Rehabilitation of the building interiors will avoid subdividing the interior rooms, removing original partitions or altering the floor to floor heights.

6. Design will avoid installation of dropped ceilings or mechanical equipment that will result in the damage or covering of original ornamental moldings and ceiling details or that will intrude on window heads.

7. New design will avoid the removal of original plaster and wood trim from traditionally finished surfaces.

8. Rehabilitation procedures will avoid using destructive methods to remove coatings from historic features.

The guidelines listed above should be considered in light of the overarching guidance provided by the Secretary of the Interior’s Standards; the stated intent of the Preservation, Design, & Development Guidelines as discussed above; and the specific recommendations generated by in the Historic Structure Reports/Building Preservation Plans, which respond to the findings of a comprehensive

building-specific significance and condition assessment study.

Preservation Zoning

The General Services Administration uses Building Preservation Plans and Historic Structure Reports to provide guidance in accommodating new requirements and building user needs while preserving each building’s unique historic character. The technique of “preservation zoning” is used by the GSA to establish a hierarchy of significance for categorizing exterior and interior areas of each building to guide the long-term preservation approach for individual spaces and for the building as a whole.

Preservation zoning is based upon archival research to understand the chronology of the development of the building, an evaluation of the significance of individual spaces, identification of original features that may be obscured by later alterations, and documentation of existing conditions. Zoning guides the development of specific recommendations for the short and long term care of the building. Of particular importance for historic public buildings is the sequence and character of public spaces such as entrances, lobbies, corridors, and stairways that lead from the exterior to more private interior spaces. (These characteristics are present in some of the St. Elizabeths west campus buildings, although other campus buildings are less hierarchical in organization.) Adjoining interconnected spaces are typically assigned one zone to maintain their character as a continuous suite. Exterior zones include visible roofing as well as associated landscape and site features. Flat or very shallow pitched roof areas not visible from grade are considered separately.

The identification of significant features is an important component both in understanding the overall significance of the building and in defining preservation zoning. National Park Service *Preservation Brief 17: Architectural Character: Identifying the Visual Aspects of Historic Buildings as an Aid to Preserving Their Character* describes a process for identification of significant features of historic buildings to assist in understanding their character and recommending appropriate treatment approaches.\(^{47}\)

Although evaluation of historic integrity is related to the determination of preservation zones, it is common for spaces in public buildings to have been altered to some extent. These alterations do not prevent a space from being designated as restoration or rehabilitation, as long as the essential form or character is sufficiently intact to make restoration or rehabilitation practical. Preservation zoning is primarily intended to define a future treatment approach. Common alterations to interior finishes, such as the introduction of carpet over original flooring or the addition of suspended ceilings below original plaster ceilings, do not prevent a space from being designated for restoration or rehabilitation.

The GSA has defined three categories of preservation treatment zones: restoration, rehabilitation, and renovation. This hierarchy reflects the relative architectural importance and public visibility of the building’s exterior and interior spaces. The GSA has provided the following guidelines for designation of building elements, and spaces as restoration, rehabilitation, or renovation zones:

Restoration zones (Zone 1) typically include primary facades and their settings, landscaped courtyards, public lobbies, corridors, stairways, original elevators, courtrooms, hearing rooms, other ceremonial spaces, libraries, executive suites and restrooms retaining historic ornamental finishes such as marble partitions, structural glass and porcelain pedestal sinks. These

spaces merit retention of their original materials and features and restoration to remove inappropriate alterations such as suspended ceilings and reinstall missing features such as period lighting that contribute significantly to the historic character of these spaces.

Rehabilitation zones (Zone 2) generally include most of the tenant spaces where alterations have occurred but significant original materials remain (i.e. windows, trim, doors, plaster walls, etc.) even if some features, such as lighting, have been removed or ceiling volumes obscured by suspended ceiling. Spaces merit a rehabilitation zoning if their historic configuration remains essentially intact and they contain historic materials or architectural features worth preserving. To establish the goal of preserving original materials within these spaces in a major modernization or upgrade, these secondary spaces must be designated rehabilitation zones.

Renovation zones (Zone 3) are typically limited to attics, basements, utilitarian spaces, and areas which have been so altered that no original material remains. These non-significant spaces may be demolished in their entirety, as long as the alterations do not adversely affect adjoining rehabilitation or restoration zone spaces. Alterations to ceilings, walls, doors and other features adjoining rehabilitation or restoration zones, such as changes along a building perimeter, must be undertaken in a manner that preserves the appearance and integrity of adjoining significant spaces. Examples of such approaches include configuring suspended ceilings to preserve the full height of the windows as seen from the outside of the building.

Restoration zoning indicates that a space will be restored to its original materials and architectural character. Restoration may also imply that the original use of the space will be continued. Contemporary interventions are minimized.

Rehabilitation zoning allows greater flexibility to accommodate new uses while retaining character-defining features and materials. Some alterations and interventions are allowed.

Renovation zoning implies either that few if any original materials or features survive intact or that the particular space does not contain distinguishing materials or features. Spaces zoned as renovation can be freely altered to suit contemporary needs.

Diagrams illustrating the recommended zoning for the General Kitchen are provided as Figures 100 and 101. Also refer to the list of character-defining features provided above under Evaluation of Significance.

Zone 1 – Restoration
The following spaces in the General Kitchen are designated as Zone 1: building massing and all exterior elevations. The exterior elevations are significant in that they convey the historic appearance and character of the Building, and contribute to the overall significance of the campus. Significant features of the exterior elevations include the exterior brick and stone masonry, the wood screened monitors, and the original doors and windows.

Zone 2 – Rehabilitation
Spaces designated as Zone 2 include primarily the main kitchen spaces of the second floor. Original exterior walls that are enclosed by subsequent additions are also designated as Zone 2. In the more significant Zone 2 interior spaces, retention of character-defining features and restoration of missing historic elements is appropriate. These features may include the spatial volume, relationship (e.g., connections and openings) to adjacent spaces, and certain decorative elements. In less significant Zone 2 spaces historic elements should be retained.

48 Preservation zoning guidelines, correspondence to the authors from Caroline Alderson and George Siekkinen, GSA, February and May 2009.
where present, but more extensive modifications may be appropriate, including removal of partial or entire walls and the introduction of new interior openings.

The more significant spaces in the General Kitchen include the large kitchen rooms on the second floor. Significant features of these rooms include the spatial volume, the wood trusses, and the original doors and windows.

Less significant areas in the General Kitchen include most other interior spaces on the second floor. These rooms contain historic features and finishes, but are not of primary significance to the building. Significant features of these spaces include original windows and doors, plaster finishes and moldings, and wood trim.

Zone 3 – Renovation
Spaces designated as Zone 3 include most of the interior of the first floor as well as other non-original partitions on both floors. These spaces are utilitarian spaces that do not contain significant historic features or finishes.
Figure 100. First floor plan indicating preservation zoning.
Figure 101. Second floor plan indicating preservation zoning.

- Zone 1: Restoration
- Zone 2: Rehabilitation
- Zone 3: Renovation
RECOMMENDATIONS

Recommendations have been developed as part of the Historic Structure Report/Building Preservation Plan study based on information gathered through the historical and architectural significance evaluation and existing conditions assessment. These recommendations address structural stabilization and safety, repair measures to address existing deterioration, and restoration of missing or deteriorated historic features as appropriate to the specific building under consideration. As noted above, the recommendations have been developed in accordance with the Secretary of the Interior’s Standards for Rehabilitation, with consideration of the general guidance provided by the Preservation, Design, & Development Guidelines.

The recommendations provided in the Historic Structure Reports/Building Preservation Plans are provided for reference by the project team developing the rehabilitation design for each building. As part of the rehabilitation design process, consideration should be given to code and life safety issues (e.g., accessibility, egress, etc.), security issues (e.g., ballistic window treatments), and energy performance issues (e.g., window performance), as well as other issues related to building performance and adaptive reuse. Selection, design, detailing of specific modifications required to meet these issues as well as to address program requirements are part of the rehabilitation design scope of work.

Many of the specific recommendations provided below have been developed to address existing deterioration of the subject buildings. In general, deterioration is primarily related to water infiltration through the exterior envelope. Sources of water infiltration include deficiencies in flashings at building interfaces, as well as leakage through deteriorated masonry and at window and door perimeters. In addition, interior materials including wall and ceiling plaster and finish flooring are deteriorating as a result of moisture from condensation. Although temporary louvers and electric solar powered fans are provided in the building, inadequate ventilation as a result of window closure (board-ups), together with lack of heat and air movement, is contributing to the pre-existing condensation problem.

Also, as with many of the subject buildings, deterioration has resulted in numerous safety hazards. On the building exterior, loose or displaced masonry and roofing elements are a potential safety hazard. On the building interior, one safety hazard is the presence of broken glass in numerous windows. Another example is the spalled and failing ceiling plaster, and loose or detached light fixtures, piping and conduit, and other overhead and wall-mounted appurtenances.

Consideration should be given to restoring the late nineteenth century exterior appearance of the building. Minor alterations to meet contemporary functional needs and code requirements may be required, such as the provision of a historically sensitive, fully accessible exterior entrance path.

The treatment approach for the building interior finishes will depend upon the final program for reuse of the building and associated plan requirements, and the need to install new mechanical and electrical systems. The interior spaces retain many original features and finishes, such as the primary open volume of space, clerestory windows, ceramic tile, ornamental plaster, wood trim, and other elements that should be retained as part of the rehabilitation.

Similarly, repairs and modifications to the building structural systems are in part dependent on the specific uses of the interior spaces. The structural recommendations presented below include short term measures needed to address issues related to safety and stability, and long term measures needed as part of overall building rehabilitation.
Specific recommendations for exterior and interior materials and features and building structural systems are presented in the following sections.

Exterior

General

- Work should be performed in accordance with the *Preservation, Design, & Development Guidelines*.
- Prior to undertaking rehabilitation of the building, the existing and historic spaces, materials, elements, and systems should be documented with HABS-quality drawings and photography.
- The east elevation of the General Kitchen has not been inadequately enclosed following the demolition of the General Kitchen Extension. The semi-circular arches on the north and south sides of this portion of the building are important architectural features and could function again as a breezeway. However, the detailing of the east elevation requires further design consideration to create an appropriate permanent exterior wall to replace the current temporary rolled roofing applied to a vertical surface.

Roofing, Downspouts, and Drainage

- The existing asphalt shingle roofing system requires replacement. Following any necessary structural repair or strengthening, a new roofing system should be installed over appropriate new underlayment, incorporating new copper flashings and other accessories matching the original roofing materials and design. The flashing design at the intersection of the two hip roof shapes requires careful study. As documented in archival photographs, the east wing historically had a standing seam sheet metal roof, while the west wing had a slate roof. Further design consideration is needed to determine the appropriate new roof materials.
- The built-in gutter system at the roof perimeter should be repaired. Appropriate flashing and waterproofing details are required.
- All existing external downspouts should be replaced with new functional exterior downspouts. Further research is needed to confirm the metal material of the original downspouts. Consideration should be given either to connecting the downspouts to new campus storm sewer systems or designing an appropriate discharge at grade.
- The existing grades, slopes, locations of impervious paving, and site drainage provisions at the building perimeter should be reviewed, particularly as relates to the drainage of water from downspouts or drain piping and the protection of the basement level from water infiltration. Appropriate drainage away from the building foundation should be ensured.

Masonry

- Isolated cracked or severely deteriorated areas of brick masonry should be rebuilt using replica brick units that match the dimensions, color, and texture of the original units as well as their physical properties such as compression and absorption. It may be possible to salvage a closely matching brick from another building on campus or a minimally visible area on the same building.
- Poorly matched previous repairs or non-original masonry infill should be rebuilt using replica brick units that match the dimensions, color, and texture of the original units. If the existing materials are similar in size, texture, and quality of workmanship but a mismatch in color, consideration could be given to applying a masonry stain to achieve a better visual blend between the original and non-original units.
- Consideration should be given to performing physical testing of brick masonry units to determine the compressive strength and
absorption of the existing brick. The results of this testing can be used to guide selection of replacement brick units and to assist in designing a repointing mortar.

- Cracked and deteriorated mortar joints should be repointed with new mortar appropriate to the existing substrate and historic appearance. The deteriorated mortar should be removed to a depth equal to twice the width of the joint, or deeper as necessary until sound mortar is encountered. Various mortar removal tools and techniques should be considered in field trials to ensure that the adjacent masonry is not damaged during joint preparation. Compatible new mortar should be installed in the properly prepared joints and tooled to a concave profile.

- Compositional analysis of the existing mortar was not performed as part of this study. Compositional analysis should be performed during the design phase to assist in mortar mix design for repair. Mortar used for repointing should have lower compressive strength than the masonry substrate.

- The exterior masonry should be cleaned to remove general soiling, organic growth, efflorescence, and corrosion staining. The purpose of cleaning is to remove deleterious contaminants, provide a clean substrate for performance of repairs, and improve building aesthetics. The cleaning products or system should be selected based on field trials. The gentlest system that is effective in removing soil without damage to the substrate should be selected. Products and chemicals that are damaging to the building materials or harmful to persons or the environment should not be used.

- The use of clear, penetrating sealers for masonry is not recommended. Sealers are not a substitute for masonry repairs and repointing and are not reversible once applied.

- Non-original and non-functioning conduit, signage, anchors, mechanical fixtures, and attachments on the masonry facades should be removed. Individual masonry units that have been damaged by former anchors or inserts should be repaired or replaced as described above. Existing anchors with the potential to corrode in the future must be removed in their entirety, not simply cut flush with the wall surface.

Wood Elements

- Deteriorated exterior wood elements including roof overhangs and dormer cladding should be repaired. Where decay is limited or localized, repair the wood element using compatible fill materials. The wood surface should be prepared by removing all decayed material, and all cracks and voids should be filled to re-create the original profile. Where decay in a particular element is extensive, consideration should be given to replacing the element with a new replica wood element matching the original configuration and profile.

- All exterior wood elements should be stripped of paint, sanded as needed to prepare the surface, primed, and painted. Colors for exposed coatings should be selected based on sampling of intact original coatings and review of archival photographs.

Windows and Doors

- The existing wood windows should be repaired. Where decay is limited or localized, repair the wood element using compatible fill materials. The wood surface should be prepared by removing all decayed material, and all cracks and voids should be filled to re-create the original profile. Where decay in a particular element is extensive, consideration should be given to splicing in a new replica wood element matching the original configuration and profile. Where deteriorated beyond repair, refer to recommendations for missing window units. Window joinery should be reinforced as needed.

- Interior and exterior window surfaces should be stripped of paint, sanded as needed to prepare the surface, primed, and painted.
Colors for exposed coatings should be selected based on sampling of intact original coatings and review of archival photographs.

- Where glass is cracked or missing, new glass should be installed that matches the dimensions, thickness, color, and reflectivity of the original glass.
- Consideration should be given to improving the weather resistance of the existing windows by recaulking, reglazing, and installing new weatherstripping as necessary.
- Missing window units and isolated individual window units that are too severely damaged to be repaired should be reproduced in the same materials as the original, using extant elements of other original windows to inform the dimensions, profiles, and finishes of the replica units.

Interior

Flooring

- Since it is a character-defining material, consideration should be given to salvaging existing ceramic tile floor finishes for reuse.

Plaster Finishes

- Given the extent of the plaster damage and utilitarian nature of the building, all plaster should be removed from the exterior walls of the building and replaced with appropriate new interior finishes.

Interior Doors

- Original wood interior doors in the building should be salvaged for reuse, if possible in their original locations.
- Existing interior doors should be stripped of paint. The historic stained and clear coated finish should be restored.

Millwork

- Original door and window surrounds and other wood trim should be salvaged for reuse.
- Existing interior millwork should be stripped of paint. The historic stained and clear coated finish should be restored.
- Where required to replace missing or heavily deteriorated millwork, new wood millwork should be provided matching, based on the design of original millwork in the building and finished to match the historic appearance.

Structure

The structure of the General Kitchen is generally in fair condition. However, moisture damage has adversely affected the exterior masonry walls, older wood framed floor systems, and isolated portions of the roof framing. Evidence of rising damp and or moisture seepage into the lower level is also apparent and will need to be addressed as part of long-term repairs. The foundation walls generally appear to be intact and salvageable with repair. The brick arch and concrete floor structures are intact and are salvageable with repair.

The methods utilized to restore the building structure will be in part contingent upon the specific uses for the spaces. The following repairs are recommended for short term and long term remediation for this building.

Short Term Remediation

- Doors and windows should be secured while maintaining ventilation of the building. Access to all parts of the building should remain restricted until long-term remediation procedures have been implemented.
- Gutters and downspouts should be monitored and maintained to ensure proper water shedding around the base of the buildings. Gutter extensions to direct rain water further away from the base of the building should be added.
- Active water leaks at the roof should be addressed, and it should be confirmed that roof drain lines are properly cleared.
Long Term Remediation

- The installation of a continuous drain tile system should be considered to help address ground water issues and apparent rising damp at the base of the building.
- An analysis of floor structures should be performed to evaluate the adequacy of the existing slab, arch, and beam assemblies. The extent of needed reinforcing for these floors will be dependent upon the long term proposed use for this building. A more detailed structural analysis, beyond the scope of this project, is necessary to determine the capacity of this floor system.
- The wood framed roof systems at the single-story building portions as well as at isolated areas of the upper roofs likely require localized reinforcement or rebuilding as part of the long term remediation work. In addition, a more detailed evaluation of the roof trusses will be necessary, including detailed investigation of embedded supports within masonry bearing walls and evaluation of decayed roof components.

Mechanical, Electrical, and Plumbing

All hot water piping in the building should be removed or abandoned in place. All radiators should be removed as well. An appropriate new heating, ventilating, and air conditioning system should be designed for the building.

Due to the existing conditions of the building, the electrical equipment has been exposed to heat, humidity and dirt build-up over a prolonged period of time. This exposure caused corrosion on the contact surfaces and severely compromised the operating mechanisms of the circuit breakers within the equipment. As a result, the operation and functionality of the overall equipment have been adversely affected and the equipment has been rendered unsuitable for reuse. The existing service switchboard, distribution panels, and panelboards should be removed completely and replaced with new equipment. All new electrical equipment should be located in dedicated electrical closets. The existing lighting should also be removed. Modern lighting control technology and equipment will be required to serve any new lighting design for the space.

It would be preferable for the building to receive an incoming medium voltage feed directly from the electrical utility company (PEPCO); however, this should be confirmed as part of the rehabilitation design. Both 208/120V and 480/277V electrical service should be available to feed the building loads, as larger mechanical loads are commonly served at 480V. If this direction is pursued, a new 480V pad-mounted transformer should be supplied by PEPCO. New 480/208/120V step-down transformers will be required and should be placed in dedicated electrical closets strategically located within the building.

The plumbing system is generally unusable as it would not be feasible to return it to service without incurring numerous water leaks and frequent maintenance requirements.
BIBLIOGRAPHY

Correspondence and Promotional Literature Relating Primarily to the Selection of Hospital Sites by the Federal Board of Hospitalization, 1928–1943. Accessed at the National Archives Building, Washington, D.C.; Records of St. Elizabeths Hospital, Record Group 418.

Hearings before Subcommittee of U.S. Congress, House Committee on Appropriations in Charge of Sundry Civil Appropriations Bill for 1901, House Committee on Appropriations, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.

Maps and Plans of the Government Hospital for the Insane (St. Elizabeths Hospital), 05/27/189–12/14/1938. Department of the Interior, St. Elizabeths Hospital (1916–06/30/1940). Accessed at the National Archives at College Park, Maryland; Records of St. Elizabeths Hospital, Record Group 418.

Photographs of Structures at St. Elizabeths Hospital, Washington, D.C., 1968. Department of Health, Education, and Welfare. Public Health Service, Health Services and Mental Health Administration, National Institute of Mental Health, St. Elizabeths Hospital, Office of the Superintendent (04/01/1968–07/01/1973). Accessed at the National Archives at College Park, Maryland; Records of St. Elizabeths Hospital, Record Group 418.

Specifications for the Erection and Completion of Building “A” for the Government Hospital for the Insane, Shepley, Rutan, and Coolidge, June 17, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.

Specifications for the Erection and Completion of Building “B” for the Government Hospital for the Insane, Shepley, Rutan, and Coolidge, June 17, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.

Specifications for the Erection and Completion of Building “C” for the Government Hospital for the Insane, Shepley, Rutan, and Coolidge, June 17, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.

Specifications for the Erection and Completion of Building “E” for the Government Hospital for the Insane, Shepley, Rutan, and Coolidge, June 17, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.
Specifications for the Erection and Completion of Building “J” for the Government Hospital for the Insane, Shepley, Rutan, and Coolidge, June 17, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.

Specifications for the Erection and Completion of Building “K” for the Government Hospital for the Insane, Shepley, Rutan, and Coolidge, June 17, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.

Specifications for the Erection and Completion of Building “L” for the Government Hospital for the Insane, Shepley, Rutan, and Coolidge, June 17, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.

Specifications for the Erection and Completion of Building “M” for the Government Hospital for the Insane, Shepley, Rutan, and Coolidge, June 17, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.

Specifications for the Erection and Completion of Building “Q” for the Government Hospital for the Insane, Shepley, Rutan, and Coolidge, June 17, 1901. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 4.

Specifications for the Erection and Completion of the Assembly Hall for the Government Hospital for the Insane, Sunderland Brothers, May 25, 1907. Accessed at the National Archives at College Park, Maryland; Records of the Secretary of the Interior, Record Group 48, Box 10.

Topographical Map of the Site and Lands of the Government Hospital for the Insane near Washington, D.C. Surveyed and Drawn by Frank S. Eastman, Civil Engineer. 1873. Accessed at the National Archives at College Park, Maryland, Cartographic and Architectural Drawings Division; Records of the Secretary of the Interior, Record Group 48.

The collection contains various topographical maps and site plans for the District of Columbia and St. Elizabeths campus from 1855–1985. Some of the maps are accessible online at http://memory.loc.gov/cgi-bin/map_item.pl?data=/home/www/data/gmd/gmd385/g3852/g3852s/ct002086.jp2&style=gmd&itemLink=?ammem/gmd.klpmap,ww2map,:@field(NUMBER+@band(g3852s+ct002086))&title=[Maps%20of%20Saint%20Elizabetht Hospital,%20Washington%20D.C.,201985]%20%20by%20C.H.%20Nichols,%20sup't%20surveyed%20by%20John%20Coyle%20;%20Thos.%20U.%20Walter,%20arch't,%20ground%20plan%20designed%20by%20C.H.%20Nichols,%20sup't (accessed on February 16, 2010).

The collection houses the records of the Olmsted Associates (Series B, Job Files) as well as the Charles H. Nichols Papers. For the purposes of this study, a cursory review of archival material in this collection was performed to identify relevant documents.

The repository houses a large selection of annual reports from 1854–1866, 1871–1872, 1890–1903, 1915–1932, and 1946–1952. Additionally, the library has copies of the reports of the Special Committee on Investigation of the Government Hospital for the Insane from 1906 and 1926. Some of the resources have been digitized and are available for download. An extensive review of these materials was performed for this study.

National Archives Building, Washington, D.C.
Record Group 418: Records of St. Elizabeths Hospital. The repository provides a free publication entitled the Preliminary Inventory of the Records of St. Elizabeths Hospital which is a detailed inventory of documents contained within the National Archives of the United States as of August 21, 1978, Record Group 418: Records of St. Elizabeths Hospital. The National Archives Building in Washington, D.C. contains the Letters of Inspection from the Board of Visitors, historical data files relating to initial development of the campus, and detailed records from subordinate units relating to the preparation of the Superintendent’s annual report. Much of the material is handwritten and provides extensive information regarding maintenance and repair on the west campus. Record Group 418 is a large collection of materials from which WJE was able to review all of the available photographic and cartographic documents as well as the textual files deemed most relevant to the scope of the project (approximately one-third of the narrative documents in the collection).

Record Group 42: Records of the Office of Public Buildings and Public Parks of the National Capital. For purposes of this study, WJE completed a cursory survey of relevant entries in this record group. Significant references to St. Elizabeths Hospital were not identified in the materials reviewed.

National Archives at College Park, College Park, Maryland
Record Group 418: Records of St. Elizabeths Hospital. The repository provides a free publication entitled the Preliminary Inventory of the Records of St. Elizabeths Hospital, which is a detailed inventory of documents contained within the National Archives of the United States as of August 21, 1978, Record Group 418: Records of St. Elizabeths Hospital. The National Archives at College Park contains hundreds of archival photographs of the west campus dating from the 1890s through the 1960s. The
photographs are divided into three collections: 418-G, 418-H, and 418-P, which contain images of the campus, building exteriors, building interiors, and campus life. Some of the archival photographs have been digitized and are available for download. Many of the images are duplicates of those available through the General Services Administration archive. In the Cartographic and Architectural Division of the library there is a collection of site plans and drawings of the hospital dating from 1856 through 1939. Record Group 418 is a large collection of materials from which WJE was able to review all of the photographic and cartographic documents as well as the textual files deemed most relevant to the scope of the project (approximately one-third of the narrative documents in the collection).

Record Group 48: Records of the Secretary of the Interior. Extensive information on St. Elizabeths Hospital is available through Record Group 48, Entry 300, Boxes 1 through 15. The resource can be viewed at the Textual Documents Division of the library and provides detailed information pertaining to early twentieth-century development on the campus. This collection includes unique archival photographs, extensive specifications, and detailed correspondence with contractors relating to the construction of the lettered buildings and Hitchcock Hall. An extensive review of the materials was completed by WJE for purposes of this study.

St. Elizabeths Hospital Database
Compiled under the direction of the General Services Administration, the digital database contains more than 1,300 archival photographs, construction documents, and sketches of St. Elizabeths west campus structures, features, and landscapes. The collection is organized by building and includes plans and elevations signed by Charles Nichols and Thomas U. Walter from 1860, Civil War era photography, an extensive array of photographs from 1890 to 1905, documentation from the 1945 Public Building Administration survey, campus improvement plans from the 1950s, archival photographs from the 1960s, and a photographic survey of buildings done by Dr. Jogues Prandoni in 2002. All images are saved as TIF files. An extensive review of the materials was completed by WJE for purposes of this study.

St. Elizabeths Hospital Health Sciences Library
The Health Sciences Library is located on the St. Elizabeths Hospital east campus and houses a large scale model of the St. Elizabeths campus as it appeared in 1976. The library collection also contains a bound copy of the 1945 Public Building Administration survey, an extensive collection of annual reports, a full archive of the Sun Dial, the Elizabethan, and the St. Elizabeths Reporter—the St. Elizabeths Hospital newsletter—and hospital management plans from the 1970s and 1980s. Available photographs are of a candid nature and document campus events and ceremonies. The collection contains extensive documentation of the people who resided and worked at the St. Elizabeths Hospital during the late twentieth century. WJE completed a cursory survey of the archive with extensive review given to archival photographs and master plan documents.
American Institute of Architects/American Architecture Foundation Archive

The collection is currently temporarily being held at the American Institute of Architects headquarters building in Washington, D.C. The materials were recently transferred to the stewardship of the General Services Administration and are being catalogued and conserved for inclusion in an exhibit at the National Building Museum. The collection consists of drawing files and textual documents. The drawings are organized by building and include an assortment of plans and elevations, including some plans of the Center Building by Thomas U. Walter and renderings of other west campus buildings and additions from the 1860s to the 1930s. There are seven boxes of textual records dating from 1900 to the 1970s. The collection includes correspondence, news articles, scrapbooks, annual reports, specification books, and a small assortment of government documents. For purposes of this study, WJE reviewed the entirety of the textual files and approximately half of the drawing collection.
APPENDICES

Appendix A – Copies of Selected Archival Documentation
Appendix B – Existing Conditions Drawings
Appendix C – Structural Framing Plans
APPENDIX A – COPIES OF SELECTED ARCHIVAL DOCUMENTATION
GENERAL KITCHEN
BUILDING NUMBER 45
WHITE MALE CAFETERIA, KITCHEN
AND CHIEF ENGINEER'S OFFICE
ERECTED 1883-1890

EAST SIDE

Two Stories, Basement and Attic.

EXTERIOR
Foundation Walls
Walls Above Grade
Windows and Doors
Roof

Material
Brick
Wood
Slate

Condition
Fair
Poor
Good

Recommendation
See Below

EXTERIOR
Floors Generally
Walls and Partitions
Ceilings
Sash, Doors and Trim

Material
Quarry Tile
Plaster
Wood

Condition
Fair

Recommendation
See Below

MECHANICAL NOTES
Facilities inadequate and generally in poor condition.

RECOMMENDATION
Replacement to provide essential appropriate facilities.

SOUTHWEST SIDE

Source: 1945 Public Building Administration survey
ST. ELIZABETHS INVENTORY - WEST CAMPUS

Date of Survey: October 1990 Record Created: January 21, 1991 Record Updated: January 14, 1992

Historic Name: Kitchen St. Es Bldg. No: 45
Other Names; Ward Names: General Kitchen, Creamery

Multiple Name: Government Hospital for the Insane (Saint Elizabeths Hospital)
Location: 2700 Martin Luther King Jr., Avenue, S.E., Washington, D.C. 20032

Acreage of Project Area: 189 acres Ownership Status: Federal
Contributing: Yes MOA Protection: Yes 1985 Survey Status: Long form
Superintendent for Design: William W. Godding Year Built: 1883, 1890
Architect: Not known Cost: Not known
Engineer: Not known Builder: Not known

Building Typology: Support building
Purpose Built Function: Kitchen
Historic Uses: Kitchen
Present Uses: Storage Square Footage: 13,334
Architectural Style: Italianate Number of Stories: 2-1/2
Foundation Material: Brick
Wall Materials: Brick
Window Configuration: 6/6
Roof Type: Gable Roof Material: Asphalt shingle

Structural System: Masonry bearing wall, interior brick vaults on iron beams and cast-iron columns; heavy timber and iron trusses at roof
Porches or Piazzas: No Visible Additions: No Tunnel: Yes
Part of Larger Building: Yes Other Components of Bldg: 44, 46
Alterations: Original openings blocked and new openings inserted at basement; changes at basement plan; loading docks added; new partitions at 1st floor; ceramic tile installed at 1st floor

Source: 1993 Historic Resources Management Plan, Building Inventory
Condition: Fair

Threat: 1st floor vacant, some water damage, functional obsolescence, transfer of property

Distinguishing Architectural Features: This utilitarian structure features brick hood molds on the 2nd floor and in the gables. Windows on lower floors have segmental arches. Large rectangular louvered vents and gabled dormers penetrate the roof. The interior of the 1st floor, which is open to the roof, is more intact than the interior of the exposed basement. The interior displays vaulted ceilings supported by cast iron columns with acanthus leaf capitals, a matchboard ceiling on the upper floor, decorative ventilation grilles, panelled wood ice box doors, and panelled double-doors. The roof is supported by an exposed heavy timber truss; tracks for food carts run through the main floor.

Areas of Significance: Architecture

Significant Persons: None known

Significant Events: None known

Comments: The Kitchen is part of the Bakery Complex, which includes the Bakery (46) and the Storehouse (44). These buildings are all on axis with the Center Building (1).

Previous Documentation on File at National Park Service: NR, NHL

Original Plans & Drawings: Alteration plans - St. Es Collection

Old Photographs & Views: Caption 86, 95, Glass Negatives, 418-P-145 - National Archives

Archival Sources: 1884 AR

USGS: Alexandria Quadrangle, Anacostia Quadrangle Scale: 1:24000

UTM Coordinates of Project Area:

Zone/East/North: Southwest Corner: 18/325920/4302090
Zone/East/North: Northwest Corner: 18/326200/4302910
Zone/East/North: Northeast Corner: 18/326770/4302450
Zone/East/North: Southeast Corner: 18/326740/4301630

Photographs: Attached Roll Number/Frame Number 8/1-8, 14-15; 17/33

45.DOC4/19/91
The removal of the bakery from the basement of the hospital to a suitable building provided under an appropriation made by the last Congress has proved a great improvement, the female wards no longer having the heat of the baker's oven added to the summer's glow. The same necessity exists even in a greater degree for a detached building for use as a kitchen and scullery. This department of domestic work is now carried on in the basement of the center building at considerable disadvantage and greatly to the discomfort of the general office, situated directly over the kitchen, where the heat at times becomes more than equatorial, and the odor of cooking received is sufficient to supply the whole building.

The new kitchen, in a building that adjoins the bakery, is a large room 65 by 45 feet, and furnished with the latest appliances and lit by skylights, it affords a pleasant contrast to the one left behind in the basement, and relieves the center building of much of the heat and odor of the cooking. In an adjoining portion of the building are large dining-halls for the outside help, with convenient lodging rooms for those employed in the culinary department, while below are storerooms, milk-room, meat-room, and scullery. A covered way affords a passage, with track for the food car, to the main building, while a longer brick arch becomes the subterranean avenue to the dining-hall of the detached buildings.

The sum of $5,000 is asked for extension of the kitchen, with the furnishing of the same. When the appropriation for a detached kitchen was made in 1882 the hospital contained 942 inmates, and it was a question if the projected new kitchen was not extravagantly large. Now, with the number of patients already exceeding 1,400, the necessity for extension is apparent. The contemplated change, which it is thought can be made for the estimate, will give ample cooking accommodations for 2,000 persons, a number beyond which it is hoped the hospital will never be called on to provide.
APPENDIX C – STRUCTURAL FRAMING PLANS